Nejvíce citovaný článek - PubMed ID 34071194
Bioreactor Co-Cultivation of High Lipid and Carotenoid Producing Yeast Rhodotorula kratochvilovae and Several Microalgae under Stress
Microalgae are mostly phototrophic microorganisms present worldwide, showcasing great adaptability to their environment. They are known for producing essential metabolites such as carotenoids, chlorophylls, sterols, lipids, and many more. This study discusses the possibility of the mixotrophic abilities of microalgae in the presence of food waste oils. The utilization of food waste materials is becoming more popular as a research subject as its production grows every year, increasing the environmental burden. In this work, waste frying oil and coffee oil were tested for the first time as a nutrition source for microalgae cultivation. Waste frying oil is produced in large amounts all over the world and its simple purification is one of its greatest advantages as it only needs to be filtered from leftover food pieces. Coffee oil is extracted from waste spent coffee grounds as a by-product. The waste frying oil and coffee oil were added to the basic algal media as an alternative source of carbon. As a pilot study for further experimentation, the effect of oil in the medium, algal adaptability, and capability to survive were tested within these experiments. The growth and production characteristics of four algae and cyanobacteria strains were tested, of which the strain Desmodesmus armatus achieved exceptional results of chlorophyll (8.171 ± 0.475 mg/g) and ubiquinone (5.708 ± 0.138 mg/g) production. The strain Chlamydomonas reindhartii showed exceptional lipid accumulation in the range of 30-46% in most of the samples.
- Klíčová slova
- coffee oil, cyanobacteria, lipids, metabolites, microalgae, waste frying oil,
- Publikační typ
- časopisecké články MeSH
The consequence of the massive increase in population in recent years is the enormous production of mainly industrial waste. The effort to minimize these waste products is, therefore, no longer sufficient. Biotechnologists, therefore, started looking for ways to not only reuse these waste products, but also to valorise them. This work focuses on the biotechnological use and processing of waste oils/fats and waste glycerol by carotenogenic yeasts of the genus Rhodotorula and Sporidiobolus. The results of this work show that the selected yeast strains are able to process waste glycerol as well as some oils and fats in a circular economy model and, moreover, are resistant to potential antimicrobial compounds present in the medium. The best-growing strains, Rhodotorula toruloides CCY 062-002-004 and Rhodotorula kratochvilovae CCY 020-002-026, were selected for fed-batch cultivation in a laboratory bioreactor in a medium containing a mixture of coffee oil and waste glycerol. The results show that both strains were able to produce more than 18 g of biomass per litre of media with a high content of carotenoids (10.757 ± 1.007 mg/g of CDW in R. kratochvilovae and 10.514 ± 1.520 mg/g of CDW in R. toruloides, respectively). The overall results prove that combining different waste substrates is a promising option for producing yeast biomass enriched with carotenoids, lipids, and beta-glucans.
- Klíčová slova
- carotenogenic yeasts, carotenoids, lipids, waste animal fat, waste coffee oil, waste frying oil, waste glycerol, β-glucans,
- Publikační typ
- časopisecké články MeSH
One of the most addressed topics today is the transfer from a linear model of economics to a model of circular economics. It is a discipline that seeks to eliminate waste produced by various industries. The food industry generates huge amounts of waste worldwide, particularly the coffee industry, and related industries produce millions of tons of waste a year. These wastes have potential utility in biotechnology, and in the production of energy, fuels, fertilizers and nutrients, using green techniques such as anaerobic digestion, co-digestion, composting, enzymatic action, and ultrasonic and hydrothermal carbonization. This work is focused on the biotechnological use of processed spent coffee grounds (SCG) and waste fat/oil materials by some Sporidiobolus sp. carotenogenic yeasts in the model of circular economics. The results show that selected yeast strains are able to grow on SCG hydrolysate and are resistant to antimicrobial compounds present in media. The most productive strain Sporidiobolus pararoseus CCY19-9-6 was chosen for bioreactor cultivation in media with a mixture of coffee lignocellulose fraction and some fat wastes. Sporidiobolus pararoseus CCY19-9-6 was able to produce more than 22 g/L of biomass in mixture of SCG hydrolysate and both coffee oil and frying oil. The combined waste substrates induced the production of lipidic metabolites, whereby the production of carotenoids exceeded 5 mg/g of dry biomass. On media with coffee oil, this strain produced high amounts of ubiquinone (8.265 ± 1.648 mg/g) and ergosterol (13.485 ± 1.275 mg/g). Overall, the results prove that a combination of waste substrates is a promising option for the production of carotenoid- and lipid-enriched yeast biomass.
- Klíčová slova
- carotenogenic yeasts, carotenoids, coffee oil, lipids, spent coffee grounds hydrolysate, waste animal fat, waste frying oil,
- Publikační typ
- časopisecké články MeSH