Nejvíce citovaný článek - PubMed ID 23728238
One of the most addressed topics today is the transfer from a linear model of economics to a model of circular economics. It is a discipline that seeks to eliminate waste produced by various industries. The food industry generates huge amounts of waste worldwide, particularly the coffee industry, and related industries produce millions of tons of waste a year. These wastes have potential utility in biotechnology, and in the production of energy, fuels, fertilizers and nutrients, using green techniques such as anaerobic digestion, co-digestion, composting, enzymatic action, and ultrasonic and hydrothermal carbonization. This work is focused on the biotechnological use of processed spent coffee grounds (SCG) and waste fat/oil materials by some Sporidiobolus sp. carotenogenic yeasts in the model of circular economics. The results show that selected yeast strains are able to grow on SCG hydrolysate and are resistant to antimicrobial compounds present in media. The most productive strain Sporidiobolus pararoseus CCY19-9-6 was chosen for bioreactor cultivation in media with a mixture of coffee lignocellulose fraction and some fat wastes. Sporidiobolus pararoseus CCY19-9-6 was able to produce more than 22 g/L of biomass in mixture of SCG hydrolysate and both coffee oil and frying oil. The combined waste substrates induced the production of lipidic metabolites, whereby the production of carotenoids exceeded 5 mg/g of dry biomass. On media with coffee oil, this strain produced high amounts of ubiquinone (8.265 ± 1.648 mg/g) and ergosterol (13.485 ± 1.275 mg/g). Overall, the results prove that a combination of waste substrates is a promising option for the production of carotenoid- and lipid-enriched yeast biomass.
- Klíčová slova
- carotenogenic yeasts, carotenoids, coffee oil, lipids, spent coffee grounds hydrolysate, waste animal fat, waste frying oil,
- Publikační typ
- časopisecké články MeSH
Multifunctional biomass is able to provide more than one valuable product, and thus, it is attractive in the field of microbial biotechnology due to its economic feasibility. Carotenogenic yeasts are effective microbial factories for the biosynthesis of a broad spectrum of biomolecules that can be used in the food and feed industry and the pharmaceutical industry, as well as a source of biofuels. In the study, we examined the effect of different nitrogen sources, carbon sources and CN ratios on the co-production of intracellular lipids, carotenoids, β-glucans and extracellular glycolipids. Yeast strain R. kratochvilovae CCY 20-2-26 was identified as the best co-producer of lipids (66.7 ± 1.5% of DCW), exoglycolipids (2.42 ± 0.08 g/L), β-glucan (11.33 ± 1.34% of DCW) and carotenoids (1.35 ± 0.11 mg/g), with a biomass content of 15.2 ± 0.8 g/L, by using the synthetic medium with potassium nitrate and mannose as a carbon source. It was shown that an increased C/N ratio positively affected the biomass yield and production of lipids and β-glucans.
- Klíčová slova
- Rhodotorula kratochvilovae, carotenoids, extracellular glycolipids, lipids, β-glucan,
- Publikační typ
- časopisecké články MeSH
The co-cultivation of red yeasts and microalgae works with the idea of the natural transport of gases. The microalgae produce oxygen, which stimulates yeast growth, while CO2 produced by yeast is beneficial for algae growth. Both microorganisms can then produce lipids. The present pilot study aimed to evaluate the ability of selected microalgae and carotenogenic yeast strains to grow and metabolize in co-culture. The effect of media composition on growth and metabolic activity of red yeast strains was assessed simultaneously with microalgae mixotrophy. Cultivation was transferred from small-scale co-cultivation in Erlenmeyer flasks to aerated bottles with different inoculation ratios and, finally, to a 3L bioreactor. Among red yeasts, the strain R. kratochvilovae CCY 20-2-26 was selected because of the highest biomass production on BBM medium. Glycerol is a more suitable carbon source in the BBM medium and urea was proposed as a compromise. From the tested microalgae, Desmodesmus sp. were found as the most suitable for co-cultivations with R. kratochvilovae. In all co-cultures, linear biomass growth was found (144 h), and the yield was in the range of 8.78-11.12 g/L of dry biomass. Lipids increased to a final value of 29.62-31.61%. The FA profile was quite stable with the UFA portion at about 80%. Around 1.98-2.49 mg/g CDW of carotenoids with torularhodine as the major pigment were produced, ubiquinone production reached 5.41-6.09 mg/g, and ergosterol yield was 6.69 mg/g. Chlorophyll production was very low at 2.11 mg/g. Pilot experiments have confirmed that carotenogenic yeasts and microalgae are capable of symbiotic co-existence with a positive impact om biomass growth and lipid metabolites yields.
- Klíčová slova
- Desmodesmus sp, Rhodotorula kratochvilovae, carotenogenic yeasts, carotenoids, co-cultivation, lipids, microalgae,
- Publikační typ
- časopisecké články MeSH
Beta (β)-glucans are polysaccharides composed of D-glucose monomers. Nowadays, β-glucans are gaining attention due to their attractive immunomodulatory biological activities, which can be utilized in pharmaceutical or food supplementation industries. Some carotenogenic Basidiomycetes yeasts, previously explored for lipid and carotenoid coproduction, could potentially coproduce a significant amount of β-glucans. In the present study, we screened eleven Basidiomycetes for the coproduction of lipids and β-glucans. We examined the effect of four different C/N ratios and eight different osmolarity conditions on the coproduction of lipids and β-glucans. A high-throughput screening approach employing microcultivation in microtiter plates, Fourier Transform Infrared (FTIR) spectroscopy and reference analysis was utilized in the study. Yeast strains C. infirmominiatum CCY 17-18-4 and R. kratochvilovae CCY 20-2-26 were identified as the best coproducers of lipids and β-glucans. In addition, C. infirmominiatum CCY 17-18-4, R. kratochvilovae CCY 20-2-26 and P. rhodozyma CCY 77-1-1 were identified as the best alternative producers of β-glucans. Increased C/N ratio led to increased biomass, lipid and β-glucans production for several yeast strains. Increased osmolarity had a negative effect on biomass and lipid production while the β-glucan production was positively affected.
- Klíčová slova
- carbon:nitrogen ratio, high-throughput screening, lipids, osmotic stress, red yeast, β-glucans,
- Publikační typ
- časopisecké články MeSH
Carotenogenic yeasts are non-conventional oleaginous microorganisms capable of utilizing various waste substrates. In this work, four red yeast strains (Rhodotorula, Cystofilobasidium, and Sporobolomyces sp.) were cultivated in media containing crude, emulsified, and enzymatically hydrolyzed animal waste fat, compared with glucose and glycerol, as single C-sources. Cell morphology (cryo-SEM (cryo-scanning electron microscopy), TEM (transmission electron microscopy)), production of biomass, lipase, biosurfactants, lipids (gas chromatography/flame ionization detection, GC/FID) carotenoids, ubiquinone, and ergosterol (high performance liquid chromatography, HPLC/PDA) in yeast cells was studied depending on the medium composition, the C source, and the carbon/nitrogen (C/N) ratio. All studied strains are able to utilize solid and processed fat. Biomass production at C/N = 13 was higher on emulsified/hydrolyzed fat than on glucose/glycerol. The production of lipids and lipidic metabolites was enhanced for several times on fat; the highest yields of carotenoids (24.8 mg/L) and lipids (54.5%/CDW (cell dry weight)) were found in S. pararoseus. Simultaneous induction of lipase and biosurfactants was observed on crude fat substrate. An increased C/N ratio (13-100) led to higher biomass production in fat media. The production of total lipids increased in all strains to C/N = 50. Oppositely, the production of carotenoids, ubiquinone, and ergosterol dramatically decreased with increased C/N in all strains. Compounds accumulated in stressed red yeasts have a great application potential and can be produced efficiently during the valorization of animal waste fat under the biorefinery concept.
- Klíčová slova
- biosurfactants, carotenogenic yeasts, carotenoids, ergosterol, lipase, lipids, ubiquinone,
- Publikační typ
- časopisecké články MeSH
We investigated the possibility of utilizing both oleaginous yeast species accumulating large amounts of lipids (Yarrowia lipolytica, Rhodotorula glutinis, Trichosporon cutaneum, Candida sp.) and traditional biotechnological non-oleaginous ones characterized by high biomass yield (Kluyveromyces polysporus, Torulaspora delbrueckii, Saccharomyces cerevisiae) as potential producers of biofuel-utilizable and nutritionally valuable lipids. The main objective was to increase lipid accumulation by increasing C/P ratio together with higher C/N ratio, while maintaining high biomass yield. The C/N ratio of 30 was found to lead to higher biomass content and the total lipid content increased significantly with higher C/P ratio. With higher ratios of both C/N and C/P, the content of monounsaturated fatty acids (FAs) in cell lipids increased while polyunsaturated FAs decreased. Oleaginous yeast species had a lower proportion of unsaturated FAs (approx. 80 %) than non-oleaginous strains (approx. 90 %). At a C/N ratio of 30 and C/P ratio 1043, T. cutaneum produced a high amount of ω-6 unsaturated linoleic acid, the precursor of some prostaglandins, leukotrienes, and thromboxanes, while Candida sp. and K. polysporus accumulated a high content of palmitoleic acid.
- MeSH
- cytosol chemie MeSH
- dusík metabolismus MeSH
- fosfáty metabolismus MeSH
- kultivační média chemie MeSH
- kvasinky růst a vývoj metabolismus MeSH
- mastné kyseliny analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dusík MeSH
- fosfáty MeSH
- kultivační média MeSH
- mastné kyseliny MeSH
The growth of microorganisms is affected by cultivation conditions, concentration of carbon and nitrogen sources and the presence of trace elements. One of the new possibilities of influencing the production of cell mass or lipids is the use of lanthanides. Lanthanides are biologically non-essential elements with wide applications in technology and industry and their concentration as environmental contaminants is therefore increasing. Although non-essential, lanthanides have been proposed (and even used) to produce beneficial effects in plants but their mechanisms of action are unclear. Recently, it was suggested that they may replace essential elements or operate as potent blockers of Ca(2+) channels. We tested the effect of low concentrations of lanthanides on traditional biotechnologically useful yeast species (Kluyveromyces polysporus, Saccharomyces cerevisiae, Torulospora delbrueckii), and species capable of high accumulation of lipids (Rhodotorula glutinis, Trichosporon cutaneum, Candida sp., Yarrowia lipolytica). Low concentrations of lanthanum and monazite were conducive to an increase in cell mass and lipids and also higher production of palmitoleic acid, commonly used in cosmetics and medicine, and ω6-linoleic acid which is a precursor of thromboxanes, prostaglandins and leucotrienes.
- Klíčová slova
- Fatty acids, Lanthanides, Microbial lipids, Non-oleaginous yeasts, Oleaginous yeasts,
- MeSH
- biomasa MeSH
- kultivační média chemie MeSH
- kvasinky účinky léků růst a vývoj MeSH
- lanthanoidy farmakologie MeSH
- mastné kyseliny biosyntéza MeSH
- metabolismus lipidů účinky léků MeSH
- průmyslová mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kultivační média MeSH
- lanthanoidy MeSH
- mastné kyseliny MeSH
We investigated the possibility of utilizing both oleaginous yeast species accumulating large amounts of lipids (Yarrowia lipolytica, Rhodotorula glutinis, Trichosporon cutaneum, and Candida sp.) and traditional biotechnological nonoleaginous ones (Kluyveromyces polysporus, Torulaspora delbrueckii, and Saccharomyces cerevisiae) as potential producers of dietetically important major fatty acids. The main objective was to examine the cultivation conditions that would induce a high ratio of dietary fatty acids and biomass. Though genus-dependent, the type of nitrogen source had a higher influence on biomass yield than the C/N ratio. The nitrogen source leading to the highest lipid accumulation was potassium nitrate, followed by ammonium sulfate, which is an ideal nitrogen source supporting, in both oleaginous and nonoleaginous species, sufficient biomass growth with concomitantly increased lipid accumulation. All yeast strains displayed high (70-90%) content of unsaturated fatty acids in total cell lipids. The content of dietary fatty acids of interest, namely, palmitoleic acid and linoleic acid, reached in Kluyveromyces and Trichosporon strains over 50% of total fatty acids and the highest yield, over 280 mg per g of dry cell weight of these fatty acids, was observed in Trichosporon with ammonium sulfate as nitrogen source at C/N ratio 70.
- Publikační typ
- časopisecké články MeSH
Lipid homeostasis is well-known in oleaginous yeasts, but there are few non-oleaginous yeast models apart from Saccharomyces cerevisiae. We are proposing the non-oleaginous yeast Candida zeylanoides QU 33 as model. The aim of this study was to investigate the influence of the carbon/nitrogen ratio and the type of nitrogen source upon oil accumulation by this yeast grown on shake flask cultures. The maximum biomass was obtained in yeast extract (2.39 ± 0.19 g/l), followed by peptone (2.24 ± 0.05 g/l), while the highest content of microbial oil (0.35 ± 0.01 g/l) and the maximum lipid yield (15.63%) were achieved with peptone. Oleic acid was the predominant cellular fatty acid in all culture media (>32.23%), followed by linoleic (>15.79%) and palmitic acids (>13.47%). The highest lipid yield using glucose and peptone was obtained at the C/N ratio of 200:1.