Nejvíce citovaný článek - PubMed ID 34177592
Rifampicin Induces Gene, Protein, and Activity of P-Glycoprotein (ABCB1) in Human Precision-Cut Intestinal Slices
PURPOSE: We aimed to compare the effects of P-glycoprotein (ABCB1) on the intestinal uptake of tenofovir disoproxil fumarate (TDF), tenofovir alafenamide fumarate (TAF), and metabolites, tenofovir isoproxil monoester (TEM) and tenofovir (TFV), and to study the molecular mechanism of drug-drug interaction (DDI) between sofosbuvir (SOF) and TDF/TAF. METHODS: Bidirectional transport experiments in Caco-2 cells and accumulation studies in precision-cut intestinal slices prepared from the ileal segment of rodent (rPCIS) and human (hPCIS) intestines were performed. RESULTS: TDF and TAF were extensively metabolised but TAF exhibited greater stability. ABCB1 significantly reduced the intestinal transepithelial transfer and uptake of the TFV(TDF) and TFV(TAF)-equivalents. However, TDF and TAF were absorbed more efficiently than TFV and TEM. SOF did not inhibit intestinal efflux of TDF and TAF or affect intestinal accumulation of TFV(TDF) and TFV(TAF)-equivalents but did significantly increase the proportion of absorbed TDF. CONCLUSIONS: TDF and TAF likely produce comparable concentrations of TFV-equivalents in the portal vein and the extent of permeation is reduced by the activity of ABCB1. DDI on ABCB1 can thus potentially affect TDF and TAF absorption. SOF does not inhibit ABCB1-mediated transport of TDF and TAF but does stabilise TDF, albeit without affecting the quantity of TFV(TDF)-equivalents crossing the intestinal barrier. Our data thus suggest that reported increases in the TFV plasma concentrations in patients treated with SOF and TDF result either from a DDI between SOF and TDF that does not involve ABCB1 or from a DDI involving another drug used in combination therapy.
- Klíčová slova
- P-glycoprotein, intestinal permeability, sofosbuvir, tenofovir alafenamide fumarate, tenofovir disoproxil fumarate,
- MeSH
- adenin metabolismus MeSH
- alanin MeSH
- Caco-2 buňky MeSH
- fumaráty MeSH
- HIV infekce * farmakoterapie MeSH
- látky proti HIV * MeSH
- lidé MeSH
- P-glykoprotein MeSH
- P-glykoproteiny MeSH
- sofosbuvir terapeutické užití MeSH
- tenofovir MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenin MeSH
- alanin MeSH
- fumaráty MeSH
- látky proti HIV * MeSH
- P-glykoprotein MeSH
- P-glykoproteiny MeSH
- sofosbuvir MeSH
- tenofovir MeSH
Human Precision-cut intestinal slices (hPCIS) are used to study intestinal physiology, pathophysiology, drug efficacy, toxicology, kinetics, and metabolism. However, the use of this ex vivo model is restricted to approximately a 24 h timeframe because of declining viability of the hPCIS during traditional culture. We hypothesized that we could extend the hPCIS viability by using organoid medium. Therefore, we cultured hPCIS for up to 72 h in organoid media [expansion medium (Emed) and differentiation medium (Dmed)]. After incubation, we assessed culture-induced changes on viability markers, specific cell type markers and we assessed the metabolic activity of enterocytes by measuring midazolam metabolite formation. We show that the adenosine triphosphate (ATP)/protein ratio of Emed-cultured hPCIS and morphology of both Emed- and Dmed-cultured hPCIS was improved compared to WME-cultured hPCIS. Emed-cultured hPCIS showed an increased expression of proliferation and stem cell markers, whereas Dmed-cultured hPCIS showed an increased expression of proliferation and enterocyte markers, along with increased midazolam metabolism. Using the Emed, the viability of hPCIS could be extended for up to 72 h, and proliferating stem cells remained preserved. Using Dmed, hPCS also remained viable for up to 72 h, and specifically rescued the metabolizing enterocytes during culture. In conclusion, by using two different organoid culture media, we could extend the hPCIS viability for up to 72 h of incubation and specifically steer stem cells or enterocytes towards their original function, metabolism, and proliferation, potentially allowing pharmacokinetic and toxicology studies beyond the 24 h timeframe.
- Klíčová slova
- Drug metabolism, Ex vivo model, Human precision-cut intestinal slices, Organoid medium, Viability,
- MeSH
- kultivační média MeSH
- lidé MeSH
- metabolická inaktivace MeSH
- midazolam * farmakologie MeSH
- organoidy MeSH
- střeva * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kultivační média MeSH
- midazolam * MeSH
The inhibition of P-glycoprotein (ABCB1) could lead to increased drug plasma concentrations and hence increase drug toxicity. The evaluation of a drug's ability to inhibit ABCB1 is complicated by the presence of several transport-competent sites within the ABCB1 binding pocket, making it difficult to select appropriate substrates. Here, we investigate the capacity of antiretrovirals and direct-acting antivirals to inhibit the ABCB1-mediated intestinal efflux of [3H]-digoxin and compare it with our previous rhodamine123 study. At concentrations of up to 100 µM, asunaprevir, atazanavir, daclatasvir, darunavir, elbasvir, etravirine, grazoprevir, ledipasvir, lopinavir, rilpivirine, ritonavir, saquinavir, and velpatasvir inhibited [3H]-digoxin transport in Caco-2 cells and/or in precision-cut intestinal slices prepared from the human jejunum (hPCIS). However, abacavir, dolutegravir, maraviroc, sofosbuvir, tenofovir disoproxil fumarate, and zidovudine had no inhibitory effect. We thus found that most of the tested antivirals have a high potential to cause drug-drug interactions on intestinal ABCB1. Comparing the Caco-2 and hPCIS experimental models, we conclude that the Caco-2 transport assay is more sensitive, but the results obtained using hPCIS agree better with reported in vivo observations. More inhibitors were identified when using digoxin as the ABCB1 probe substrate than when using rhodamine123. However, both approaches had limitations, indicating that inhibitory potency should be tested with at least these two ABCB1 probes.
- Klíčová slova
- ABCB1, antiretrovirals, direct-acting antivirals, drug–drug interactions, human precision-cut intestinal slices,
- Publikační typ
- časopisecké články MeSH