Nejvíce citovaný článek - PubMed ID 34183069
A trans locus causes a ribosomopathy in hypertrophic hearts that affects mRNA translation in a protein length-dependent fashion
The seventh iteration of the reference genome assembly for Rattus norvegicus-mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared with its predecessor. Gene annotations are now more complete, improving the mapping precision of genomic, transcriptomic, and proteomics datasets. We jointly analyzed 163 short-read whole-genome sequencing datasets representing 120 laboratory rat strains and substrains using mRatBN7.2. We defined ∼20.0 million sequence variations, of which 18,700 are predicted to potentially impact the function of 6,677 genes. We also generated a new rat genetic map from 1,893 heterogeneous stock rats and annotated transcription start sites and alternative polyadenylation sites. The mRatBN7.2 assembly, along with the extensive analysis of genomic variations among rat strains, enhances our understanding of the rat genome, providing researchers with an expanded resource for studies involving rats.
- Klíčová slova
- Rnor_6.0, genetic map, heterogeneous stock, hybrid rat diversity panel, inbred strains, mRatBN7.2, phylogenetic tree, rat, recombinant inbred, reference genome,
- MeSH
- anotace sekvence MeSH
- genetická variace genetika MeSH
- genom * genetika MeSH
- genomika * MeSH
- krysa rodu Rattus MeSH
- sekvenování celého genomu MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The seventh iteration of the reference genome assembly for Rattus norvegicus-mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared to its predecessor. Gene annotations are now more complete, significantly improving the mapping precision of genomic, transcriptomic, and proteomics data sets. We jointly analyzed 163 short-read whole genome sequencing datasets representing 120 laboratory rat strains and substrains using mRatBN7.2. We defined ~20.0 million sequence variations, of which 18.7 thousand are predicted to potentially impact the function of 6,677 genes. We also generated a new rat genetic map from 1,893 heterogeneous stock rats and annotated transcription start sites and alternative polyadenylation sites. The mRatBN7.2 assembly, along with the extensive analysis of genomic variations among rat strains, enhances our understanding of the rat genome, providing researchers with an expanded resource for studies involving rats.
- Klíčová slova
- Genetic Map, Heterogeneous Stock, Hybrid Rat Diversity Panel, Inbred Strains, Phylogenetic Tree, Rat, Recombinant Inbred, Reference Genome, Rnor_6.0, mRatBN7.2,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
The role of alternative promoter usage in tissue-specific gene expression has been well established; however, its role in complex diseases is poorly understood. We performed cap analysis of gene expression (CAGE) sequencing from the left ventricle of a rat model of hypertension, the spontaneously hypertensive rat (SHR), and a normotensive strain, Brown Norway to understand the role of alternative promoter usage in complex disease. We identified 26,560 CAGE-defined transcription start sites in the rat left ventricle, including 1,970 novel cardiac transcription start sites. We identified 28 genes with alternative promoter usage between SHR and Brown Norway, which could lead to protein isoforms differing at the amino terminus between two strains and 475 promoter switching events altering the length of the 5' UTR. We found that the shift in Insr promoter usage was significantly associated with insulin levels and blood pressure within a panel of HXB/BXH recombinant inbred rat strains, suggesting that hyperinsulinemia due to insulin resistance might lead to hypertension in SHR. Our study provides a preliminary evidence of alternative promoter usage in complex diseases.
- MeSH
- genetická transkripce genetika MeSH
- hypertenze * genetika metabolismus MeSH
- krysa rodu Rattus MeSH
- potkani inbrední SHR MeSH
- promotorové oblasti (genetika) genetika MeSH
- sekvenční analýza RNA metody MeSH
- stanovení celkové genové exprese metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Little is known about the impact of trans-acting genetic variation on the rates with which proteins are synthesized by ribosomes. Here, we investigate the influence of such distant genetic loci on the efficiency of mRNA translation and define their contribution to the development of complex disease phenotypes within a panel of rat recombinant inbred lines. RESULTS: We identify several tissue-specific master regulatory hotspots that each control the translation rates of multiple proteins. One of these loci is restricted to hypertrophic hearts, where it drives a translatome-wide and protein length-dependent change in translational efficiency, altering the stoichiometric translation rates of sarcomere proteins. Mechanistic dissection of this locus across multiple congenic lines points to a translation machinery defect, characterized by marked differences in polysome profiles and misregulation of the small nucleolar RNA SNORA48. Strikingly, from yeast to humans, we observe reproducible protein length-dependent shifts in translational efficiency as a conserved hallmark of translation machinery mutants, including those that cause ribosomopathies. Depending on the factor mutated, a pre-existing negative correlation between protein length and translation rates could either be enhanced or reduced, which we propose to result from mRNA-specific imbalances in canonical translation initiation and reinitiation rates. CONCLUSIONS: We show that distant genetic control of mRNA translation is abundant in mammalian tissues, exemplified by a single genomic locus that triggers a translation-driven molecular mechanism. Our work illustrates the complexity through which genetic variation can drive phenotypic variability between individuals and thereby contribute to complex disease.
- Klíčová slova
- Cardiac hypertrophy, Complex disease, Genetic variation, HXB/BXH rat recombinant inbred panel, Ribosome biogenesis, Ribosome profiling, Ribosomopathy, Spontaneously hypertensive rats (SHR), Translational efficiency, trans QTL mapping,
- MeSH
- biogeneze organel MeSH
- genetická variace MeSH
- iniciace translace peptidového řetězce * MeSH
- kardiomegalie genetika metabolismus patologie MeSH
- krysa rodu Rattus MeSH
- lokus kvantitativního znaku * MeSH
- malá jadérková RNA genetika metabolismus MeSH
- messenger RNA genetika metabolismus MeSH
- myokard metabolismus patologie MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- potkani inbrední SHR MeSH
- potkani transgenní MeSH
- regulace genové exprese MeSH
- ribozomální proteiny genetika metabolismus MeSH
- ribozomy genetika metabolismus patologie MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- sarkomery metabolismus patologie MeSH
- stanovení celkové genové exprese MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- malá jadérková RNA MeSH
- messenger RNA MeSH
- ribozomální proteiny MeSH