Nejvíce citovaný článek - PubMed ID 34418083
Anterior nucleus of the thalamus seizure detection in ambulatory humans
Drug-resistant epilepsy affects tens of millions of people worldwide and is associated with considerable morbidity and mortality. Thalamic deep brain stimulation and cortical responsive neurostimulation are proven treatments for focal epilepsy. Both have been used to target a range of thalamic nuclei, yet the roles of these thalamic nuclei in focal seizure generation remain incompletely understood. Thirteen patients with drug-resistant focal epilepsy undergoing intracranial EEG were consented to undergo investigation of thalamocortical networks. Sampled regions included cortical, mesial temporal, and thalamic brain regions. Visual and spectral analyses were performed to identify seizure onset patterns and correlate thalamic and cortical seizure activity. Thalamic ictal discharges were observed in all patients, including synchronous thalamocortical seizure onset discharges with distinct onset patterns. These onset patterns ranged from hypersynchronous spiking, low-voltage fast activity, ictal baseline shifts, to broadband suppression. Multiple thalamic nuclei were involved in ictal organization and propagation, with the specific nuclei depending on the cortical seizure network. The thalamus plays a crucial role in focal onset seizure generation and propagation, with distinct seizure onset patterns and nuclei involved. These findings support exploring a broader range of thalamic nuclei in epilepsy neurostimulation and have implications for seizure detection settings in intracranial sensing devices.
- Klíčová slova
- EEG, epilepsy, neurostimulation, seizure, thalamus,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Temporal lobe epilepsy is a common neurological disease characterized by recurrent seizures that often originate within limbic networks involving amygdala and hippocampus. The limbic network is involved in crucial physiologic functions involving memory, emotion and sleep. Temporal lobe epilepsy is frequently drug-resistant, and people often experience comorbidities related to memory, mood and sleep. Deep brain stimulation targeting the anterior nucleus of the thalamus (ANT-DBS) is an established therapy for temporal lobe epilepsy. However, the optimal stimulation parameters and their impact on memory, mood and sleep comorbidities remain unclear. We used an investigational brain sensing-stimulation implanted device to accurately track seizures, interictal epileptiform spikes (IES), and memory, mood and sleep comorbidities in five ambulatory subjects. Wireless streaming of limbic network local field potentials (LFPs) and subject behaviour were captured on a mobile device integrated with a cloud environment. Automated algorithms applied to the continuous LFPs were used to accurately cataloged seizures, IES and sleep-wake brain state. Memory and mood assessments were remotely administered to densely sample cognitive and behavioural response during ANT-DBS in ambulatory subjects living in their natural home environment. We evaluated the effect of continuous low-frequency and duty cycle high-frequency ANT-DBS on epileptiform activity and memory, mood and sleep comorbidities. Both low-frequency and high-frequency ANT-DBS paradigms reduced seizures. However, continuous low-frequency ANT-DBS showed greater reductions in IES, electrographic seizures and better sleep and memory outcomes. These results highlight the potential of synchronized brain sensing and dense behavioural tracking during ANT-DBS for optimizing neuromodulation therapy. While studies with larger patient numbers are needed to validate the benefits of low-frequency ANT-DBS, these findings are potentially translatable to individuals currently implanted with ANT-DBS systems.
- Klíčová slova
- artificial intelligence and machine learning, electrical brain stimulation, epilepsy comorbidities, intracranial EEG,
- Publikační typ
- časopisecké články MeSH
Early implantable epilepsy therapy devices provided open-loop electrical stimulation without brain sensing, computing, or an interface for synchronized behavioural inputs from patients. Recent epilepsy stimulation devices provide brain sensing but have not yet developed analytics for accurately tracking and quantifying behaviour and seizures. Here we describe a distributed brain co-processor providing an intuitive bi-directional interface between patient, implanted neural stimulation and sensing device, and local and distributed computing resources. Automated analysis of continuous streaming electrophysiology is synchronized with patient reports using a handheld device and integrated with distributed cloud computing resources for quantifying seizures, interictal epileptiform spikes and patient symptoms during therapeutic electrical brain stimulation. The classification algorithms for interictal epileptiform spikes and seizures were developed and parameterized using long-term ambulatory data from nine humans and eight canines with epilepsy, and then implemented prospectively in out-of-sample testing in two pet canines and four humans with drug-resistant epilepsy living in their natural environments. Accurate seizure diaries are needed as the primary clinical outcome measure of epilepsy therapy and to guide brain-stimulation optimization. The brain co-processor system described here enables tracking interictal epileptiform spikes, seizures and correlation with patient behavioural reports. In the future, correlation of spikes and seizures with behaviour will allow more detailed investigation of the clinical impact of spikes and seizures on patients.
- Klíčová slova
- electrophysiology, epilepsy, machine learning, seizures,
- Publikační typ
- časopisecké články MeSH
Chronic brain recordings suggest that seizure risk is not uniform, but rather varies systematically relative to daily (circadian) and multiday (multidien) cycles. Here, one human and seven dogs with naturally occurring epilepsy had continuous intracranial EEG (median 298 days) using novel implantable sensing and stimulation devices. Two pet dogs and the human subject received concurrent thalamic deep brain stimulation (DBS) over multiple months. All subjects had circadian and multiday cycles in the rate of interictal epileptiform spikes (IES). There was seizure phase locking to circadian and multiday IES cycles in five and seven out of eight subjects, respectively. Thalamic DBS modified circadian (all 3 subjects) and multiday (analysis limited to the human participant) IES cycles. DBS modified seizure clustering and circadian phase locking in the human subject. Multiscale cycles in brain excitability and seizure risk are features of human and canine epilepsy and are modifiable by thalamic DBS.
- MeSH
- cirkadiánní rytmus MeSH
- elektroencefalografie MeSH
- epilepsie prevence a kontrola MeSH
- hluboká mozková stimulace metody MeSH
- lidé MeSH
- psi MeSH
- riziko MeSH
- thalamus fyziologie MeSH
- záchvaty prevence a kontrola MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH