Ribosomally synthesized and post-translationally modified peptides (RiPPs) are intriguing compounds with potential pharmacological applications. While many RiPPs are known as antimicrobial agents, a limited number of RiPPs with anti-proliferative effects in cancer cells are available. Here we report the discovery of nostatin A (NosA), a highly modified RiPP belonging among nitrile hydratase-like leader peptide RiPPs (proteusins), isolated from a terrestrial cyanobacterium Nostoc sp. Its structure was established based on the core peptide sequence encoded in the biosynthetic gene cluster recovered from the producing strain and subsequent detailed nuclear magnetic resonance and high-resolution mass spectrometry analyses. NosA, composed of a 30 amino-acid peptide core, features a unique combination of moieties previously not reported in RiPPs: the simultaneous presence of oxazole/thiazole heterocycles, dehydrobutyrine/dehydroalanine residues, and a sactionine bond. NosA includes an isobutyl-modified proline residue, highly unusual in natural products. NosA inhibits proliferation of multiple cancer cell lines at low nanomolar concentration while showing no hemolysis. It induces cell cycle arrest in S-phase followed by mitochondrial apoptosis employing a mechanism different from known tubulin binding and DNA damaging compounds. NosA also inhibits Staphylococcus strains while it exhibits no effect in other tested bacteria or yeasts. Due to its novel structure and selective bioactivity, NosA represents an excellent candidate for combinatorial chemistry approaches leading to development of novel NosA-based lead compounds.
- MeSH
- Apoptosis * drug effects MeSH
- Cytostatic Agents pharmacology chemistry isolation & purification chemical synthesis MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Nostoc chemistry metabolism MeSH
- Drug Discovery MeSH
- Cell Proliferation * drug effects MeSH
- Antineoplastic Agents * pharmacology chemistry isolation & purification chemical synthesis MeSH
- Drug Screening Assays, Antitumor MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cytostatic Agents MeSH
- Antineoplastic Agents * MeSH
Trypanosoma brucei is a causative agent of the Human and Animal African Trypanosomiases. The mammalian stage parasites infect various tissues and organs including the bloodstream, central nervous system, skin, adipose tissue and lungs. They rely on ATP produced in glycolysis, consuming large amounts of glucose, which is readily available in the mammalian host. In addition to glucose, glycerol can also be used as a source of carbon and ATP and as a substrate for gluconeogenesis. However, the physiological relevance of glycerol-fed gluconeogenesis for the mammalian-infective life cycle forms remains elusive. To demonstrate its (in)dispensability, first we must identify the enzyme(s) of the pathway. Loss of the canonical gluconeogenic enzyme, fructose-1,6-bisphosphatase, does not abolish the process hence at least one other enzyme must participate in gluconeogenesis in trypanosomes. Using a combination of CRISPR/Cas9 gene editing and RNA interference, we generated mutants for four enzymes potentially capable of contributing to gluconeogenesis: fructose-1,6-bisphoshatase, sedoheptulose-1,7-bisphosphatase, phosphofructokinase and transaldolase, alone or in various combinations. Metabolomic analyses revealed that flux through gluconeogenesis was maintained irrespective of which of these genes were lost. Our data render unlikely a previously hypothesised role of a reverse phosphofructokinase reaction in gluconeogenesis and preclude the participation of a novel biochemical pathway involving transaldolase in the process. The sustained metabolic flux in gluconeogenesis in our mutants, including a triple-null strain, indicates the presence of a unique enzyme participating in gluconeogenesis. Additionally, the data provide new insights into gluconeogenesis and the pentose phosphate pathway, and improve the current understanding of carbon metabolism of the mammalian-infective stages of T. brucei.
- MeSH
- Adenosine Triphosphate metabolism MeSH
- Phosphofructokinases metabolism MeSH
- Gluconeogenesis * genetics MeSH
- Glucose metabolism MeSH
- Glycerol metabolism MeSH
- Humans MeSH
- Mammals MeSH
- Transaldolase metabolism MeSH
- Trypanosoma brucei brucei * genetics metabolism MeSH
- Carbon metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Adenosine Triphosphate MeSH
- Phosphofructokinases MeSH
- Glucose MeSH
- Glycerol MeSH
- Transaldolase MeSH
- Carbon MeSH
The long slender bloodstream form Trypanosoma brucei maintains its essential mitochondrial membrane potential (ΔΨm) through the proton-pumping activity of the FoF1-ATP synthase operating in the reverse mode. The ATP that drives this hydrolytic reaction has long been thought to be generated by glycolysis and imported from the cytosol via an ATP/ADP carrier (AAC). Indeed, we demonstrate that AAC is the only carrier that can import ATP into the mitochondrial matrix to power the hydrolytic activity of the FoF1-ATP synthase. However, contrary to expectations, the deletion of AAC has no effect on parasite growth, virulence or levels of ΔΨm. This suggests that ATP is produced by substrate-level phosphorylation pathways in the mitochondrion. Therefore, we knocked out the succinyl-CoA synthetase (SCS) gene, a key mitochondrial enzyme that produces ATP through substrate-level phosphorylation in this parasite. Its absence resulted in changes to the metabolic landscape of the parasite, lowered virulence, and reduced mitochondrial ATP content. Strikingly, these SCS mutant parasites become more dependent on AAC as demonstrated by a 25-fold increase in their sensitivity to the AAC inhibitor, carboxyatractyloside. Since the parasites were able to adapt to the loss of SCS in culture, we also analyzed the more immediate phenotypes that manifest when SCS expression is rapidly suppressed by RNAi. Importantly, when performed under nutrient-limited conditions mimicking various host environments, SCS depletion strongly affected parasite growth and levels of ΔΨm. In totality, the data establish that the long slender bloodstream form mitochondrion is capable of generating ATP via substrate-level phosphorylation pathways.
- MeSH
- Adenosine Triphosphate metabolism MeSH
- Phosphorylation MeSH
- Mitochondria metabolism MeSH
- Trypanosoma brucei brucei * metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adenosine Triphosphate MeSH
Dermanyssus gallinae is a blood-feeding mite that parasitises wild birds and farmed poultry. Its remarkably swift processing of blood, together with the capacity to blood-feed during most developmental stages, makes this mite a highly debilitating pest. To identify specific adaptations to digestion of a haemoglobin-rich diet, we constructed and compared transcriptomes from starved and blood-fed stages of the parasite and identified midgut-enriched transcripts. We noted that midgut transcripts encoding cysteine proteases were upregulated with a blood meal. Mapping the full proteolytic apparatus, we noted a reduction in the suite of cysteine proteases, missing homologues for Cathepsin B and C. We have further identified and phylogenetically analysed three distinct transcripts encoding vitellogenins that facilitate the reproductive capacity of the mites. We also fully mapped transcripts for haem biosynthesis and the ferritin-based system of iron storage and inter-tissue trafficking. Additionally, we identified transcripts encoding proteins implicated in immune signalling (Toll and IMD pathways) and activity (defensins and thioester-containing proteins), RNAi, and ion channelling (with targets for commercial acaricides such as Fluralaner, Fipronil, and Ivermectin). Viral sequences were filtered from the Illumina reads and we described, in part, the RNA-virome of D. gallinae with identification of a novel virus, Red mite quaranjavirus 1.
- MeSH
- Poultry MeSH
- Mite Infestations * veterinary parasitology MeSH
- Chickens MeSH
- Poultry Diseases * MeSH
- Mites * genetics MeSH
- RNA-Seq MeSH
- Virome MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Intramural MeSH
Most multicellular organisms are freeze sensitive, but the ability to survive freezing of the extracellular fluids evolved in several vertebrate ectotherms, some plants, and many insects. Here, we test the coupled hypotheses that are perpetuated in the literature: that irreversible denaturation of proteins and loss of biological membrane integrity are two ultimate molecular mechanisms of freezing injury in freeze-sensitive insects and that seasonally accumulated small cryoprotective molecules (CPs) stabilize proteins and membranes against injury in freeze-tolerant insects. Using the drosophilid fly, Chymomyza costata, we show that seven different soluble enzymes exhibit no or only partial loss of activity upon lethal freezing stress applied in vivo to whole freeze-sensitive larvae. In contrast, the enzymes lost activity when extracted and frozen in vitro in a diluted buffer solution. This loss of activity was fully prevented by adding low concentrations of a wide array of different compounds to the buffer, including C. costata native CPs, other metabolites, bovine serum albumin (BSA), and even the biologically inert artificial compounds HistoDenz and Ficoll. Next, we show that fat body plasma membranes lose integrity when frozen in vivo in freeze-sensitive but not in freeze-tolerant larvae. Freezing fat body cells in vitro, however, resulted in loss of membrane integrity in both freeze-sensitive and freeze-tolerant larvae. Different additives showed widely different capacities to protect membrane integrity when added to in vitro freezing media. A complete rescue of membrane integrity in freeze-tolerant larvae was observed with a mixture of proline, trehalose, and BSA.
- Keywords
- biological membrane integrity, cryopreservation, enzyme activity, freeze tolerance, protein stabilization,
- MeSH
- Acclimatization MeSH
- Cell Membrane metabolism MeSH
- Ficoll MeSH
- Insecta metabolism MeSH
- Cryoprotective Agents pharmacology MeSH
- Larva metabolism MeSH
- Proline metabolism MeSH
- Serum Albumin, Bovine * MeSH
- Trehalose * MeSH
- Freezing MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Ficoll MeSH
- Cryoprotective Agents MeSH
- Proline MeSH
- Serum Albumin, Bovine * MeSH
- Trehalose * MeSH
The accumulation of trehalose has been suggested as a mechanism underlying insect cross-tolerance to cold/freezing and drought. Here we show that exposing diapausing larvae of the drosophilid fly, Chymomyza costata to dry conditions significantly stimulates their freeze tolerance. It does not, however, improve their tolerance to desiccation, nor does it significantly affect trehalose concentrations. Next, we use metabolomics to compare the complex alterations to intermediary metabolism pathways in response to three environmental factors with different ecological meanings: environmental drought (an environmental stressor causing mortality), decreasing ambient temperatures (an acclimation stimulus for improvement of cold hardiness), and short days (an environmental signal inducing diapause). We show that all three factors trigger qualitatively similar metabolic rearrangement and a similar phenotypic outcome-improved larval freeze tolerance. The similarities in metabolic response include (but are not restricted to) the accumulation of typical compatible solutes and the accumulation of energy-rich molecules (phosphagens). Based on these results, we suggest that transition to metabolic suppression (a state in which chemical energy demand is relatively low but need for stabilization of macromolecules is high) represents a common axis of metabolic pathway reorganization towards accumulation of non-toxic cytoprotective compounds, which in turn stimulates larval freeze tolerance.
- Keywords
- cold, cross-tolerance, cytoprotectants, drought, freezing, metabolism,
- MeSH
- Acclimatization physiology MeSH
- Drosophilidae * MeSH
- Insecta MeSH
- Larva physiology MeSH
- Cold Temperature MeSH
- Droughts * MeSH
- Trehalose MeSH
- Freezing MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Trehalose MeSH