Most cited article - PubMed ID 35335614
Somatic Dimorphism in Cercariae of a Bird Schistosome
Cercarial dermatitis (CD; swimmer's itch) is a re-emerging skin disease caused by avian schistosomes, including Trichobilharzia franki. Here, we present morphological, genetic, and experimental evidence confirming the involvement of T. franki in recent CD outbreaks across Czechia. Ocellate furcocercariae were collected from Radix auricularia at four sites and identified as T. franki through ITS1 sequencing. Despite minor morphological differences from previously reported specimens, all isolates belonged to the genetically uniform T. franki "auricularia" clade. Experimental infection of mice with T. franki resulted in a ∼ 60 % penetration rate, accompanied by early-onset scratching and transient weight loss. Gross pathology demonstrated hemorrhages on lung surfaces and splenic atrophy at 2 days post-infection (dpi), along with a prominent enlargement of parotid lymph nodes at both 2 and 7 dpi. Histological examination of the skin revealed viable schistosomula, moderate leukocyte infiltration, epidermal hyperplasia, and the formation of hyperkeratotic crusts at 2 dpi. By 7 dpi, parasites were no longer detectable, but epidermal pathology persisted. In the lungs, eosinophil-rich foci and multifocal hemorrhages were observed at 2 dpi, transitioning to neutrophil-dominated lesions at 7 dpi, despite the absence of detectable schistosomula. Splenocytes from infected mice responded to homologous and heterologous cercarial antigens by producing IFN gamma, IL-4, and IL-10, indicating a mixed Th1/Th2/Treg profile and notable species cross-reactivity. However, parasite-specific IgG remained undetectable at 7 dpi. These findings confirm T. franki as the causative agent of CD outbreaks and underscore its capacity to induce localized and systemic pathology and immune response, cross-reacting with other schistosomes.
- Keywords
- Avian schistosomes, Cercarial dermatitis, Lungs, Skin, Trichobilharzia franki,
- Publication type
- Journal Article MeSH
Cercariae are motile infectious larval stages of digenetic trematodes that emerge from their molluscan first intermediate host to seek the next host in their life cycle. A crucial transmission strategy of trematodes involves releasing the maximum number of cercariae at times that coincide with the presence and activity of the next hosts, thereby increasing the likelihood of successful infection and continuation of the parasite's life cycle. We investigated the cercarial emergence of two furcocercous (with forked tail) trematodes Tylodelphys clavata (von Nordmann, 1832) and unidentified species of Sanguinicola Plehn, 1905 from naturally infected Ampullaceana balthica (Linnaeus) and Radix auricularia (Linnaeus) snails under natural light and constant temperature conditions. Both trematodes, which are important fish pathogens, showed distinct daily emergence rhythms influenced by light intensity, with emergence peaking at sunset and night for T. clavata and at night for Sanguinicola sp. The daily emergence rhythms of T. clavata cercariae were consistent in both summer and autumn, indicating adaptability to natural changes in seasonal photoperiods. The interspecific differences in emergence patterns are likely related to the behavioural patterns of upstream, i.e., next in the life cycle, fish hosts. Cercarial output also varied between trematode species and seasons, likely due to combined effects of snail size, intensity of trematode infection in snails and size of cercariae rather than seasonal temperatures. The trematodes were molecularly characterised using mitochondrial (cox1) and nuclear (28S rDNA and ITS1-5.8S-ITS2) regions to confirm their identity and facilitate future studies. This study highlights the importance of light-regulated and host-synchronised cercarial emergence rhythms for increased trematode transmission success and reveals significant variation in cercarial output influenced by environmental and biological factors, contributing to a deeper understanding of trematode ecology and disease management.
- Keywords
- DNA, Sanguinicola sp., Tylodelphys clavata, cercariae, snails, transmission,
- MeSH
- Cercaria physiology MeSH
- Snails * parasitology MeSH
- Host-Parasite Interactions MeSH
- Seasons MeSH
- Light MeSH
- Trematoda * physiology genetics classification growth & development MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
The emergence of cercariae from infected mollusks is considered one of the most important adaptive strategies for maintaining the trematode life cycle. Short transmission opportunities of cercariae are often compensated by periodic daily rhythms in the cercarial release. However, there are virtually no data on the cercarial emergence of bird schistosomes from freshwater ecosystems in northern latitudes. We investigated the daily cercarial emergence rhythms of the bird schistosome Trichobilharzia sp. "peregra" from the snail host Radix balthica in a subarctic lake under both natural and laboratory seasonal conditions. We demonstrated a circadian rhythm with the highest emergence during the morning hours, being seasonally independent of the photo- and thermo-period regimes of subarctic summer and autumn, as well as relatively high production of cercariae at low temperatures typical of northern environments. These patterns were consistent under both field and laboratory conditions. While light intensity triggered and prolonged cercarial emergence, the temperature had little effect on cercarial rhythms but regulated seasonal output rates. This suggests an adaptive strategy of bird schistosomes to compensate for the narrow transmission window. Our results fill a gap in our knowledge of the transmission dynamics and success of bird schistosomes under high latitude conditions that may serve as a basis for elucidating future potential risks and implementing control measures related to the spread of cercarial dermatitis due to global warming.
- Keywords
- Trichobilharzia, bird schistosome, cercariae, emergence, light, temperature, trematodes,
- Publication type
- Journal Article MeSH