Nejvíce citovaný článek - PubMed ID 35888347
Electron-Phonon Coupling and Nonthermal Effects in Gold Nano-Objects at High Electronic Temperatures
Laser synthesis and processing of colloids (LSPC) in liquids has gained widespread applications in producing nanomaterials of different classes of solids. While the technical processes in different cases of ablation, fragmentation or colloidal fusion may look macroscopically different in each application, the underlying fundamental mechanisms are always the same cascade of laser interaction with matter, non-thermal or thermal energy deposition, phase transitions, and the subsequent structure formation processes. Disentangling these mechanisms represents a veritable challenge, as ultrafast and structurally sensitive experimental methods are required. This review presents a discussion of how state-of-the-art experimental protocols using ultrafast lasers and sensitive structural probes, such as electrons or X-rays are able to address this challenge. In particular, it is possible to investigate LSPC on single objects using single probe pulses and avoid accumulation effects in a heterogeneous sample. The presented results capture structure formation with femtosecond and atomic scale resolution. Ultrafast time-resolved probing approaches are key to revealing the transient states and pathways that govern material transformation in LSPC.
- Klíčová slova
- X-ray scattering, electron diffraction, laser processing in liquids, optical imaging, optical spectroscopy, pump–probe, single objects, time-resolved probing,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In this review, we describe the application of Boltzmann kinetic equations for modelling warm dense matter and plasma formed after irradiation of solid materials with intense femtosecond X-ray pulses. Classical Boltzmann kinetic equations are derived from the reduced N-particle Liouville equations. They include only single-particle densities of ions and free electrons present in the sample. The first version of the Boltzmann kinetic equation solver was completed in 2006. It could model non-equilibrium evolution of X-ray-irradiated finite-size atomic systems. In 2016, the code was adapted to study plasma created from X-ray-irradiated materials. Additional extension of the code was then also performed, enabling simulations in the hard X-ray irradiation regime. In order to avoid treatment of a very high number of active atomic configurations involved in the excitation and relaxation of X-ray-irradiated materials, an approach called 'predominant excitation and relaxation path' (PERP) was introduced. It limited the number of active atomic configurations by following the sample evolution only along most PERPs. The performance of the Boltzmann code is illustrated in the examples of X-ray-heated solid carbon and gold. Actual model limitations and further model developments are discussed. This article is part of the theme issue 'Dynamic and transient processes in warm dense matter'.
- Klíčová slova
- Boltzmann kinetic equations, X-ray free-electron lasers, plasma, warm dense matter,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Ultrafast laser irradiation of metals can often be described theoretically with the two-temperature model. The energy exchange between the excited electronic system and the atomic one is governed by the electron-phonon coupling parameter. The electron-phonon coupling depends on both, the electronic and the atomic temperature. We analyze the effect of the dependence of the electron-phonon coupling parameter on the atomic temperature in ruthenium, gold, and palladium. It is shown that the dependence on the atomic temperature induces nonlinear behavior, in which a higher initial electronic temperature leads to faster electron-phonon equilibration. Analysis of the experimental measurements of the transient thermoreflectance of the laser-irradiated ruthenium thin film allows us to draw some, albeit indirect, conclusions about the limits of the applicability of the different coupling parametrizations.
- Klíčová slova
- electron–phonon coupling, two-temperature model,
- Publikační typ
- časopisecké články MeSH
Laser irradiation of metals is widely used in research and applications. In this work, we study how the material geometry affects electron-phonon coupling in nano-sized gold samples: an ultrathin layer, nano-rod, and two types of gold nanoparticles (cubic and octahedral). We use the combined tight-binding molecular dynamics Boltzmann collision integral method implemented within XTANT-3 code to evaluate the coupling parameter in irradiation targets at high electronic temperatures (up to Te~20,000 K). Our results show that the electron-phonon coupling in all objects with the same fcc atomic structure (bulk, layer, rod, cubic and octahedral nanoparticles) is nearly identical at electronic temperatures above Te~7000 K, independently of geometry and dimensionality. At low electronic temperatures, reducing dimensionality reduces the coupling parameter. Additionally, nano-objects under ultrafast energy deposition experience nonthermal damage due to expansion caused by electronic pressure, in contrast to bulk metal. Nano-object ultrafast expansion leads to the ablation/emission of atoms and disorders the inside of the remaining parts. These nonthermal atomic expansion and melting are significantly faster than electron-phonon coupling, forming a dominant effect in nano-sized gold.
- Klíčová slova
- Boltzmann collision integrals, XTANT, electron–phonon coupling, nanoparticle, nonthermal melting, tight-binding molecular dynamics, ultrathin layer,
- Publikační typ
- časopisecké články MeSH
It is well known that sufficiently thick metals irradiated with ultrafast laser pulses exhibit phonon hardening, in contrast to ultrafast nonthermal melting in covalently bonded materials. It is still an open question how finite size metals react to irradiation. We show theoretically that generally metals, under high electronic excitation, undergo nonthermal phase transitions if material expansion is allowed (e.g. in finite samples). The nonthermal phase transitions are induced via an increase of the electronic pressure which leads to metal expansion. This, in turn, destabilizes the lattice triggering a phase transition without a thermal electron-ion coupling mechanism involved. We find that hexagonal close-packed metals exhibit a diffusionless transition into a cubic phase, whereas metals with a cubic lattice melt. In contrast to covalent solids, nonthermal phase transitions in metals are not ultrafast, predicative on the lattice expansion.
- Publikační typ
- časopisecké články MeSH