Most cited article - PubMed ID 36232947
Study of Biological Activities and ADMET-Related Properties of Salicylanilide-Based Peptidomimetics
A series of nine 2,3-disubstituted-quinazolin-4(3H)-one derived Schiff bases and their three Cu(II) complexes was prepared and tested for their antimicrobial activities against reference strains Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 and resistant clinical isolates of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis (VRE). All the substances were tested in vitro against Mycobacterium tuberculosis H37Ra ATCC 25177, M. kansasii DSM 44162 and M. smegmatis ATCC 700084. While anti-enterococcal and antimycobacterial activities were insignificant, 3-[(E)-(2-hydroxy-5-nitrobenzylidene)amino]-2-(2-hydroxy-5-nitrophenyl)-2,3-dihydroquinazolin-4(1H)-one (SB3) and its Cu(II) complex (SB3-Cu) demonstrated bacteriostatic antistaphylococcal activity. In addition, both compounds, as well as the other two prepared complexes, showed antibiofilm activity, which resulted in a reduction of biofilm formation and eradication of mature S. aureus biofilm by 80% even at concentrations lower than the values of their minimum inhibitory concentrations. In addition, the compounds were tested for their cytotoxic effect on the human monocytic leukemia cell line THP-1. The antileukemic efficiency was improved by the preparation of Cu(II) complexes from the corresponding non-chelated Schiff base ligands.
- Keywords
- Antibacterial activity, Antibiofilm effect, Cu(II) complexes, Cytotoxicity, Quinazolinones, Schiff bases,
- Publication type
- Journal Article MeSH
A series of thirty-two anilides of 3-(trifluoromethyl)cinnamic acid (series 1) and 4-(trifluoromethyl)cinnamic acid (series 2) was prepared by microwave-assisted synthesis. All the compounds were tested against reference strains Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 and resistant clinical isolates of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis (VRE). All the compounds were evaluated in vitro against Mycobacterium smegmatis ATCC 700084 and M. marinum CAMP 5644. (2E)-3-[3-(Trifluoromethyl)phenyl]-N-[4-(trifluoromethyl)phenyl]prop-2-enamide (1j), (2E)-N-(3,5-dichlorophenyl)-3-[3-(trifluoromethyl)phenyl]prop-2-enamide (1o) and (2E)-N-[3-(trifluoromethyl)phenyl]-3-[4-(trifluoromethyl)-phenyl]prop-2-enamide (2i), (2E)-N-[3,5-bis(trifluoromethyl)phenyl]-3-[4-(trifluoromethyl)phenyl]-prop-2-enamide (2p) showed antistaphylococcal (MICs/MBCs 0.15-5.57 µM) as well as anti-enterococcal (MICs/MBCs 2.34-44.5 µM) activity. The growth of M. marinum was strongly inhibited by compounds 1j and 2p in a MIC range from 0.29 to 2.34 µM, while all the agents of series 1 showed activity against M. smegnatis (MICs ranged from 9.36 to 51.7 µM). The performed docking study demonstrated the ability of the compounds to bind to the active site of the mycobacterial enzyme InhA. The compounds had a significant effect on the inhibition of bacterial respiration, as demonstrated by the MTT assay. The compounds showed not only bacteriostatic activity but also bactericidal activity. Preliminary in vitro cytotoxicity screening was assessed using the human monocytic leukemia cell line THP-1 and, except for compound 2p, all effective agents did show insignificant cytotoxic effect. Compound 2p is an interesting anti-invasive agent with dual (cytotoxic and antibacterial) activity, while compounds 1j and 1o are the most interesting purely antibacterial compounds within the prepared molecules.
- Keywords
- Michael acceptors, antimicrobial activity, cinnamamides, cytotoxicity, docking study, lipophilicity, structure–activity relationships,
- MeSH
- Anti-Bacterial Agents pharmacology chemistry MeSH
- Cinnamates pharmacology chemistry MeSH
- Humans MeSH
- Methicillin-Resistant Staphylococcus aureus * MeSH
- Microbial Sensitivity Tests MeSH
- Staphylococcal Infections * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Cinnamates MeSH
- cinnamic acid MeSH Browser
A new method for modifying the structure of tetracyclic quinobenzothiazinium derivatives has been developed, allowing introduction of various substituents at different positions of the benzene ring. The method consists of reacting appropriate aniline derivatives with 5,12-(dimethyl)thioquinantrenediinium bis-chloride. A series of new quinobenzothiazine derivatives was obtained with propyl, allyl, propargyl and benzyl substituents in 9, 10 and 11 positions, respectively. The structure of the obtained compounds was analyzed by 1H and 13C NMR (HSQC, HMBC) and X-ray analysis. All the compounds were tested against reference strains Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212, and representatives of multidrug-resistant clinical isolates of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis (VRE). In addition, all the compounds were evaluated in vitro against Mycobacterium smegmatis ATCC 700084 and M. marinum CAMP 5644. 9-Benzyloxy-5-methyl-12H-quino [3,4-b][1,4]benzothiazinium chloride (6j), 9-propoxy-5-methyl-12H-quino[3,4-b][1,4]benzothiazinium chloride (6a) and 9-allyloxy-5-methyl-12H-quino[3,4-b][1,4]benzothiazinium chloride (6d) demonstrated high activity against the entire tested microbial spectrum. The activities of the compounds were comparable with oxacillin, tetracycline and ciprofloxacinagainst staphylococcal strains and with rifampicin against both mycobacterial strains. Compound 6j had a significant effect on the inhibition of bacterial respiration as demonstrated by the MTT assay. The compounds showed not only bacteriostatic activity, but also bactericidal activity. Preliminary in vitro cytotoxicity screening of the compounds performed using normal human dermal fibroblasts (NHDF) proved that the tested compounds showed an insignificant cytotoxic effect on human cells (IC50 > 37 µM), making these compounds interesting for further investigation. Moreover, the intermolecular similarity of novel compounds was analyzed in the multidimensional space (mDS) of the structure/property-related in silico descriptors by means of principal component analysis (PCA) and hierarchical clustering analysis (HCA), respectively. The distance-oriented structure/property distribution was related with the experimental lipophilic data.
- Keywords
- antibacterial activity, azaphenothiazines, cytotoxicity, descriptor-based similarity analysis, phenothiazine,
- MeSH
- Anti-Bacterial Agents chemistry MeSH
- Chlorides pharmacology MeSH
- Humans MeSH
- Methicillin-Resistant Staphylococcus aureus * MeSH
- Microbial Sensitivity Tests MeSH
- Mycobacterium * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Chlorides MeSH