Nejvíce citovaný článek - PubMed ID 36499402
Design, Synthesis and Antimicrobial Properties of New Tetracyclic Quinobenzothiazine Derivatives
A series of new unique acetylene derivatives of 8-hydroxy- and 8-methoxyquinoline- 5-sulfonamide 3a-f and 6a-f were prepared by reactions of 8-hydroxy- and 8-methoxyquinoline- 5-sulfonyl chlorides with acetylene derivatives of amine. A series of new hybrid systems containing quinoline and 1,2,3-triazole systems 7a-h were obtained by reactions of acetylene derivatives of quinoline-5-sulfonamide 6a-d with organic azides. The structures of the obtained compounds were confirmed by 1H and 13C NMR spectroscopy and HR-MS spectrometry. The obtained quinoline derivatives 3a-f and 6a-f and 1,2,3-triazole derivatives 7a-h were tested for their anticancer and antimicrobial activity. Human amelanotic melanoma cells (C-32), human breast adenocarcinoma cells (MDA-MB-231), and human lung adenocarcinoma cells (A549) were selected as tested cancer lines, while cytotoxicity was investigated on normal human dermal fibroblasts (HFF-1). All the compounds were also tested against reference strains Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 and representatives of multidrug-resistant clinical isolates of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis. Only the acetylene derivatives of 8-hydroxyquinoline-5-sulfonamide 3a-f were shown to be biologically active, and 8-hydroxy-N-methyl-N-(prop-2-yn-1-yl)quinoline-5-sulfonamide (3c) showed the highest activity against all three cancer lines and MRSA isolates. Its efficacies were comparable to those of cisplatin/doxorubicin and oxacillin/ciprofloxacin. In the non-cancer HFF-1 line, the compound showed no toxicity up to an IC50 of 100 µM. In additional tests, compound 3c decreased the expression of H3, increased the transcriptional activity of cell cycle regulators (P53 and P21 proteins), and altered the expression of BCL-2 and BAX genes in all cancer lines. The unsubstituted phenolic group at position 8 of the quinoline is the key structural fragment necessary for biological activity.
- Klíčová slova
- 1,2,3-triazole, 8-hydroxyquinoline, acetylene derivatives, antibacterial activity, anticancer activity, cytotoxicity, synthesis,
- MeSH
- antibakteriální látky * farmakologie chemie chemická syntéza MeSH
- chinoliny * chemie farmakologie chemická syntéza MeSH
- Enterococcus faecalis účinky léků MeSH
- lidé MeSH
- mikrobiální testy citlivosti * MeSH
- molekulární struktura MeSH
- nádorové buněčné linie MeSH
- protinádorové látky * farmakologie chemie chemická syntéza MeSH
- racionální návrh léčiv MeSH
- Staphylococcus aureus účinky léků MeSH
- sulfonamidy * farmakologie chemie chemická syntéza MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky * MeSH
- chinoliny * MeSH
- protinádorové látky * MeSH
- sulfonamidy * MeSH
A series of nine 2,3-disubstituted-quinazolin-4(3H)-one derived Schiff bases and their three Cu(II) complexes was prepared and tested for their antimicrobial activities against reference strains Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 and resistant clinical isolates of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis (VRE). All the substances were tested in vitro against Mycobacterium tuberculosis H37Ra ATCC 25177, M. kansasii DSM 44162 and M. smegmatis ATCC 700084. While anti-enterococcal and antimycobacterial activities were insignificant, 3-[(E)-(2-hydroxy-5-nitrobenzylidene)amino]-2-(2-hydroxy-5-nitrophenyl)-2,3-dihydroquinazolin-4(1H)-one (SB3) and its Cu(II) complex (SB3-Cu) demonstrated bacteriostatic antistaphylococcal activity. In addition, both compounds, as well as the other two prepared complexes, showed antibiofilm activity, which resulted in a reduction of biofilm formation and eradication of mature S. aureus biofilm by 80% even at concentrations lower than the values of their minimum inhibitory concentrations. In addition, the compounds were tested for their cytotoxic effect on the human monocytic leukemia cell line THP-1. The antileukemic efficiency was improved by the preparation of Cu(II) complexes from the corresponding non-chelated Schiff base ligands.
- Klíčová slova
- Antibacterial activity, Antibiofilm effect, Cu(II) complexes, Cytotoxicity, Quinazolinones, Schiff bases,
- Publikační typ
- časopisecké články MeSH
In this paper, we describe a new method for synthesizing hybrid combinations of 1,2,3-triazoles with a tetracyclic quinobenzothiazinium system. The developed approach allowed for the production of a series of new azaphenothiazine derivatives with the 1,2,3-triazole system in different positions of the benzene ring. In practice, the methodology consists of the reaction of triazole aniline derivatives with thioquinanthrenediinium bis-chloride. The structure of the products was determined by 1H-NMR, 13C-NMR spectroscopy, and HR-MS spectrometry, respectively. Moreover, the spatial structure of the molecule and the arrangement of molecules in the crystal (unit cell) were determined by X-ray crystallography. The anticancer activity profiles of the synthesized compounds were tested in vitro against human cancer cells of the A549, SNB-19, and T47D lines and the normal NHDF cell line. Additional tests of antibacterial activity against methicillin-sensitive and methicillin-resistant staphylococci, vancomycin-sensitive and vancomycin-resistant enterococci, and two mycobacterial strains were also performed. In fact, the dependence of anticancer and antibacterial activity on the substituent type and its position in the quinobenzothiazinium system was observed. Furthermore, the distance-guided property evaluation was performed using principal component analysis (PCA) and hierarchical clustering analysis (HCA) on the pool of the calculated descriptors. Finally, the theoretically approximated partition coefficients (clogP) were (inter-)correlated with each other and cross-compared with the empirically specified logPTLC parameters.
- Klíčová slova
- antibacterial activity, anticancer activity, azaphenothiazines, phenothiazine,
- MeSH
- antibakteriální látky * farmakologie MeSH
- buněčné linie MeSH
- chloridy MeSH
- lidé MeSH
- shluková analýza MeSH
- vankomycin * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky * MeSH
- chloridy MeSH
- vankomycin * MeSH