Nejvíce citovaný článek - PubMed ID 37018120
The role of sand flies as vectors of viruses other than phleboviruses
BACKGROUND: Phlebotomine sand flies (Diptera: Psychodidae) are important vectors of various pathogens, mainly Leishmania parasites. In the Old World, the most important genus in term of pathogens transmission is the genus Phlebotomus, which includes many proven or suspected vectors of several Leishmania species, while the genus Sergentomyia remains so far unproven as a vector of human pathogens. Algeria is one of the most affected countries by human leishmaniasis. METHODS: In the present study, an entomological survey was carried out in two provinces, Ghardaïa and Illizi, located in the north and central Sahara, respectively, where cases of human leishmaniasis are recorded. Our goal was to understand the role of the local sand fly species in the transmission of Leishmania parasites and to analyze their blood meal preferences. Collected sand flies were identified by a combination of morphological and molecular approaches that included DNA-barcoding and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) protein profiling. In addition, female blood meals were analyzed by peptide mass mapping using MALDI-TOF MS. RESULTS: In total, 640 sand fly specimens belonging to Phlebotomus and Sergentomyia genera were collected in the two provinces. Sergentomyia antennata and Se. fallax were most abundant species in Ghardaïa, and Ph. papatasi and Ph. alexandri in Illizi. In addition, a new sand fly species was described in Illizi named Sergentomyia (Sergentomyia) imihra n. sp. Blood meal analysis of the engorged females revealed various mammalian hosts, especially goats, but also humans for Phlebotomus papatasi and Ph. alexandri, suggesting that these vector species are opportunistic feeders. CONCLUSIONS: Integrative approach that combined morphological analysis, sequencing of DNA markers, and protein profiling enabled the recognition and description of a new Sergentomyia species, raising the number of the Algerian sand fly fauna to 27 species. Further sand fly surveillance in the central Sahara is recommended to identify the thus-far unknown males of Se. imihra n. sp.
- Klíčová slova
- Leishmaniasis, Phlebotomus, Sergentomyia, Algeria, Barcode, Blood meal, MALDI-TOF mass spectrometry,
- MeSH
- hmyz - vektory * klasifikace fyziologie parazitologie anatomie a histologie MeSH
- kozy parazitologie MeSH
- Leishmania genetika fyziologie klasifikace MeSH
- leishmanióza přenos MeSH
- lidé MeSH
- Phlebotomus klasifikace anatomie a histologie fyziologie genetika MeSH
- Psychodidae * klasifikace fyziologie anatomie a histologie MeSH
- stravovací zvyklosti * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Alžírsko MeSH
We investigated gene expression patterns in Lutzomyia and Phlebotomus sand fly vectors of leishmaniases. Using quantitative PCR, we assessed the expression stability of potential endogenous control genes commonly used in dipterans. We analyzed Lutzomyia longipalpis and Phlebotomus papatasi samples from L3 and L4 larval stages, adult sand flies of different sexes, diets, dsRNA injection, and Leishmania infection. Six genes were evaluated: actin, α-tubulin, GAPDH, 60 S ribosomal proteins L8 and L32 (RiboL8 and RiboL32), and elongation factor 1-α (EF1-α). EF1-α was among the most stably expressed along with RiboL8 in L. longipalpis larvae and RiboL32 in adults. In P. papatasi, EF1-α and RiboL32 were the top in larvae, while EF1-α and actin were the most stable in adults. RiboL8 and actin were the most stable genes in dissected tissues and infected guts. Additionally, five primer pairs designed for L. longipalpis or P. papatasi were effective in PCR with Lutzomyia migonei, Phlebotomus duboscqi, Phlebotomus perniciosus, and Sergentomyia schwetzi cDNA. Furthermore, L. longipalpis RiboL32 and P. papatasi α-tubulin primers were suitable for qPCR with cDNA from the other four species. Our research provides tools to enhance relative gene expression studies in sand flies, facilitating the selection of endogenous control for qPCR.
- Klíčová slova
- Lutzomyia, Phlebotomus, Endogenous control gene, Gene expression, Gene stability, Reference gene,
- MeSH
- esenciální geny * MeSH
- hmyz - vektory genetika MeSH
- hmyzí geny MeSH
- larva genetika MeSH
- Leishmania genetika MeSH
- Phlebotomus * genetika MeSH
- Psychodidae genetika MeSH
- stanovení celkové genové exprese metody MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Sand fly females require a blood meal to develop eggs. The size of the blood meal is crucial for fecundity and affects the dose of pathogens acquired by females when feeding on infected hosts or during experimental membrane-feeding. METHODS: Under standard laboratory conditions, we compared blood meal volumes taken by females of ten sand fly species from four genera: Phlebotomus, Lutzomyia, Migonomyia, and Sergentomyia. The amount of ingested blood was determined using a haemoglobin assay. Additionally, we weighed unfed sand flies to calculate the ratio between body weight and blood meal weight. RESULTS: The mean blood meal volume ingested by sand fly females ranged from 0.47 to 1.01 µl. Five species, Phlebotomus papatasi, P. duboscqi, Lutzomyia longipalpis, Sergentomyia minuta, and S. schwetzi, consumed about double the blood meal size compared to Migonomyia migonei. The mean body weight of females ranged from 0.183 mg in S. minuta to 0.369 mg in P. duboscqi. In males, the mean body weight ranged from 0.106 mg in M. migonei to 0.242 mg in P. duboscqi. Males were always lighter than females, with the male-to-female weight ratio ranging from 75% (in Phlebotomus argentipes) to 52% (in Phlebotomus tobbi). CONCLUSIONS: Females of most species took a blood meal 2.25-3.05 times their body weight. Notably, the relatively tiny females of P. argentipes consumed blood meals 3.34 times their body weight. The highest (Mbl/Mf) ratios were found in both Sergentomyia species studied; females of S. minuta and S. schwetzi took blood meals 4.5-5 times their body weight. This parameter is substantially higher than that reported for mosquitoes and biting midges.
- Klíčová slova
- Lutzomyia, Phlebotomus, Sergentomyia, Blood meal, Haemoglobin, Prediuresis,
- MeSH
- krev MeSH
- Phlebotomus fyziologie MeSH
- Psychodidae * fyziologie MeSH
- stravovací zvyklosti * MeSH
- tělesná hmotnost * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Sand flies (Diptera, Psychodidae) are the principal vectors of Leishmania spp., the causative agents of leishmaniasis, as well as phleboviruses. In the Balkans, the endemicity and spreading of sand fly-borne diseases are evident, particularly in the Republic of Kosovo, a country with a predominantly humid continental climate. To date, understanding the drivers behind the spatial structure and diversity patterns of sand fly communities in humid continental regions remains limited. Therefore, elucidating the geographical and ecological factors contributing to the presence of potential vector species in the country is crucial. We aimed to enhance our understanding of factors influencing sand fly occurrence in cool and wet wintering humid continental areas, which could serve as a model for other countries with similar climatic conditions. Therefore, we assessed the currently known sand fly fauna through detailed environmental analyses, including Voronoi tessellation patterns, entropy calculations, Principal Coordinate and Component Analyses, Hierarchical Clustering, Random Trees, and climatic suitability patterns. Notable differences in the ecological tolerance of the species were detected, and the most important climatic features limiting sand fly presence were wind speed and temperature seasonality. Sand flies were observed to prefer topographical environments with little roughness, and the modelled climatic suitability values indicated that, dominantly, the western plain regions of Kosovo harbour the most diverse sand fly fauna; and are the most threatened by sand fly-borne diseases. Phlebotomus neglectus and P. perfiliewi, both confirmed vectors for L. infantum and phleboviruses, were identified as two main species with vast distribution in Kosovo. Contrary to this, most other present species are relatively sparse and restricted to temperate rather than humid continental regions. Our findings reveal a diverse potential sand fly fauna in Kosovo, indicating the need for tailored strategies to address varying risks across the country's western and eastern regions in relation to leishmaniasis control amidst changing environmental conditions.
- Klíčová slova
- Balkan, Environmental analysis, Leishmania, Machine learning, Phlebovirus, Sand fly, Spatial patterns,
- Publikační typ
- časopisecké články MeSH
Sandflies are known vectors of leishmaniasis. In the Old World, sandflies are also vectors of viruses while little is known about the capacity of New World insects to transmit viruses to humans. Here, we relate the identification of RNA sequences with homology to rhabdovirus nucleocapsids (NcPs) genes, initially in the Lutzomyia longipalpis LL5 cell lineage, named NcP1.1 and NcP2. The Rhabdoviridae family never retrotranscribes its RNA genome to DNA. The sequences here described were identified in cDNA and DNA from LL-5 cells and in adult insects indicating that they are transcribed endogenous viral elements (EVEs). The presence of NcP1.1 and NcP2 in the L. longipalpis genome was confirmed in silico. In addition to showing the genomic location of NcP1.1 and NcP2, we identified another rhabdoviral insertion named NcP1.2. Analysis of small RNA molecules derived from these sequences showed that NcP1.1 and NcP1.2 present a profile consistent with elements targeted by primary piRNAs, while NcP2 was restricted to the degradation profile. The presence of NcP1.1 and NcP2 was investigated in sandfly populations from South America and the Old World. These EVEs are shared by different sandfly populations in South America while none of the Old World species studied presented the insertions.
- Klíčová slova
- Lutzomyia longipalpis, PIWI-RNA, endogenous viral element,
- MeSH
- DNA MeSH
- leishmanióza * MeSH
- lidé MeSH
- Psychodidae * MeSH
- Rhabdoviridae * MeSH
- RNA MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Brazílie MeSH
- Jižní Amerika MeSH
- Názvy látek
- DNA MeSH
- RNA MeSH
Sandflies (Diptera; Psychodidae) are medical and veterinary vectors that transmit diverse parasitic, viral, and bacterial pathogens. Their identification has always been challenging, particularly at the specific and sub-specific levels, because it relies on examining minute and mostly internal structures. Here, to circumvent such limitations, we have evaluated the accuracy and reliability of Wing Interferential Patterns (WIPs) generated on the surface of sandfly wings in conjunction with deep learning (DL) procedures to assign specimens at various taxonomic levels. Our dataset proves that the method can accurately identify sandflies over other dipteran insects at the family, genus, subgenus, and species level with an accuracy higher than 77.0%, regardless of the taxonomic level challenged. This approach does not require inspection of internal organs to address identification, does not rely on identification keys, and can be implemented under field or near-field conditions, showing promise for sandfly pro-active and passive entomological surveys in an era of scarcity in medical entomologists.
- MeSH
- deep learning * MeSH
- entomologie MeSH
- Phlebotomus * parazitologie MeSH
- Psychodidae * parazitologie MeSH
- reprodukovatelnost výsledků MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH