Vaccination is the most effective measure to prevent disease outbreaks in fish aquaculture, with oral vaccine administration emerging as the most practical approach. However, oral vaccines face a notable limitation due to insufficient stimulation of the complex gut-associated lymphoid tissue caused by factors such as vaccine degradation, poor absorption, and recognition by the immune cells. An innovative solution to these limitations lies in the plant-based production of recombinant vaccines. Plant cells enable the production and targeted storage of recombinant vaccines in specific cell organelles which ensure superior protection from degradation and contain natural compounds acting as adjuvants. Our study explores the potential of barley (Hordeum vulgare), a globally significant cereal crop, for producing orally administered subunit vaccines against viral infections affecting economically important fish species in the Salmonidae and Cyprinidae families. Through Agrobacterium-mediated transformation of immature barley embryos, we have generated homozygous T2 generation of transgenic barley expressing recombinant antigens of spring viremia of carp virus and infectious salmon anaemia virus. The expression of these plant-based recombinant vaccines was confirmed by immunodetection, which was supported by fluorescence observation, specifically in the seed endosperm. The antigenicity of transgenic plant material containing recombinant antigens was evaluated using an intubation model of common carp (Cyprinus carpio), revealing a substantial upregulation of the immunoglobulin transcripts in both systemic and mucosal tissues over a period of 28 days following a single dose of transgenic antigens. Collectively, these results underscore the potential of barley-based recombinant vaccines for disease prevention in fish aquaculture.
- Klíčová slova
- Barley, Fish vaccines, Fish viruses, Molecular farming, Recombinant antigens,
- MeSH
- aplikace orální MeSH
- geneticky modifikované rostliny * MeSH
- ječmen (rod) * MeSH
- kapři MeSH
- nemoci ryb * prevence a kontrola imunologie MeSH
- Rhabdoviridae imunologie MeSH
- virové vakcíny imunologie biosyntéza MeSH
- vodní hospodářství * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- virové vakcíny MeSH
The genus Betanucleorhabdovirus includes plant viruses with negative sense, non-segmented, single-stranded RNA genomes. Here, we characterized putative novel betanucleorhabdoviruses infecting a medically important plant, elderberry. Total RNA was purified from the leaves of several plants, ribodepleted and sequenced using the Illumina platform. Sequence data analysis led to the identification of thirteen contigs of approximately 13.5 kb, showing a genome structure (3'-N-P-P3-M-G-L-5') typical of plant rhabdoviruses. The detected isolates showed 69.4 to 98.9% pairwise nucleotide identity and had the highest identity among known viruses (64.7-65.9%) with tomato betanucleorhabdovirus 2. A detailed similarity analysis and a phylogenetic analysis allowed us to discriminate the elderberry isolates into five groups, each meeting the sequence-based ICTV demarcation criterion in the Betanucleorhabdovirus genus (lower than 75% identity for the complete genome). Hence, the detected viruses appear to represent five novel, closely related betanucleorhabdoviruses, tentatively named Sambucus betanucleorhabdovirus 1 to 5.
- Klíčová slova
- genetic diversity, high-throughput sequencing, mixed infection, plant rhabdovirus,
- MeSH
- bez černý * MeSH
- fylogeneze * MeSH
- genetická variace * MeSH
- genom virový * MeSH
- listy rostlin virologie MeSH
- nemoci rostlin * virologie MeSH
- Rhabdoviridae genetika izolace a purifikace klasifikace MeSH
- RNA virová genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA virová MeSH
Sandflies are known vectors of leishmaniasis. In the Old World, sandflies are also vectors of viruses while little is known about the capacity of New World insects to transmit viruses to humans. Here, we relate the identification of RNA sequences with homology to rhabdovirus nucleocapsids (NcPs) genes, initially in the Lutzomyia longipalpis LL5 cell lineage, named NcP1.1 and NcP2. The Rhabdoviridae family never retrotranscribes its RNA genome to DNA. The sequences here described were identified in cDNA and DNA from LL-5 cells and in adult insects indicating that they are transcribed endogenous viral elements (EVEs). The presence of NcP1.1 and NcP2 in the L. longipalpis genome was confirmed in silico. In addition to showing the genomic location of NcP1.1 and NcP2, we identified another rhabdoviral insertion named NcP1.2. Analysis of small RNA molecules derived from these sequences showed that NcP1.1 and NcP1.2 present a profile consistent with elements targeted by primary piRNAs, while NcP2 was restricted to the degradation profile. The presence of NcP1.1 and NcP2 was investigated in sandfly populations from South America and the Old World. These EVEs are shared by different sandfly populations in South America while none of the Old World species studied presented the insertions.
- Klíčová slova
- Lutzomyia longipalpis, PIWI-RNA, endogenous viral element,
- MeSH
- DNA MeSH
- leishmanióza * MeSH
- lidé MeSH
- Psychodidae * MeSH
- Rhabdoviridae * MeSH
- RNA MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Brazílie MeSH
- Jižní Amerika MeSH
- Názvy látek
- DNA MeSH
- RNA MeSH
BACKGROUND: Coevolution between pathogens and their hosts decreases host morbidity and mortality. Bats host and can tolerate viruses which can be lethal to other vertebrate orders, including humans. Bat adaptations to infection include localized immune response, early pathogen sensing, high interferon expression without pathogen stimulation, and regulated inflammatory response. The immune reaction is costly, and bats suppress high-cost metabolism during torpor. In the temperate zone, bats hibernate in winter, utilizing a specific behavioural adaptation to survive detrimental environmental conditions and lack of energy resources. Hibernation torpor involves major physiological changes that pose an additional challenge to bat-pathogen coexistence. Here, we compared bat cellular reaction to viral challenge under conditions simulating hibernation, evaluating the changes between torpor and euthermia. RESULTS: We infected the olfactory nerve-derived cell culture of Myotis myotis with an endemic bat pathogen, European bat lyssavirus 1 (EBLV-1). After infection, the bat cells were cultivated at two different temperatures, 37 °C and 5 °C, to examine the cell response during conditions simulating euthermia and torpor, respectively. The mRNA isolated from the cells was sequenced and analysed for differential gene expression attributable to the temperature and/or infection treatment. In conditions simulating euthermia, infected bat cells produce an excess signalling by multitude of pathways involved in apoptosis and immune regulation influencing proliferation of regulatory cell types which can, in synergy with other produced cytokines, contribute to viral tolerance. We found no up- or down-regulated genes expressed in infected cells cultivated at conditions simulating torpor compared to non-infected cells cultivated under the same conditions. When studying the reaction of uninfected cells to the temperature treatment, bat cells show an increased production of heat shock proteins (HSPs) with chaperone activity, improving the bat's ability to repair molecular structures damaged due to the stress related to the temperature change. CONCLUSIONS: The lack of bat cell reaction to infection in conditions simulating hibernation may contribute to the virus tolerance or persistence in bats. Together with the cell damage repair mechanisms induced in response to hibernation, the immune regulation may promote bats' ability to act as reservoirs of zoonotic viruses such as lyssaviruses.
- Klíčová slova
- Antiviral state, Chiroptera, EBLV-1, Heat shock proteins (HSPs), Hibernation, In vitro infection model, Innate immunity, Lyssaviruses, Myotis myotis, Transcriptome,
- MeSH
- Chiroptera * fyziologie MeSH
- hibernace * MeSH
- Lyssavirus * MeSH
- transkriptom MeSH
- viry * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Sand flies (Diptera: Phlebotominae) are proven vectors of various pathogens of medical and veterinary importance. Although mostly known for their pivotal role in the transmission of parasitic protists of the genus Leishmania that cause leishmaniases, they are also proven or suspected vectors of many arboviruses, some of which threaten human and animal health, causing disorders such as human encephalitis (Chandipura virus) or serious diseases of domestic animals (vesicular stomatitis viruses). We reviewed the literature to summarize the current published information on viruses detected in or isolated from phlebotomine sand flies, excluding the family Phenuiviridae with the genus Phlebovirus, as these have been well investigated and up-to-date reviews are available. Sand fly-borne viruses from four other families (Rhabdoviridae, Flaviviridae, Reoviridae and Peribunyaviridae) and one unclassified group (Negevirus) are reviewed for the first time regarding their distribution in nature, host and vector specificity, and potential natural transmission cycles.
- Klíčová slova
- Arurhavirus, Curiovirus, Flavivirus, Orbivirus, Orthobunyavirus, Pacuvirus, Sripuvirus, Vesiculovirus, arbovirus, sand fly, sand fly-borne virus,
- MeSH
- arboviry * MeSH
- hospodářská zvířata MeSH
- lidé MeSH
- Phlebovirus * MeSH
- Psychodidae * MeSH
- Rhabdoviridae * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
A virome screen was performed on a new breeding line, KB1, of blackcurrant. Rhabdovirus-like particles were observed by electron microscopy in ultrathin sections of flower stalks, and the complete genome sequence of a novel virus, provisionally named blackcurrant rhabdovirus 2 (BCRV2), was determined and verified using high-throughput sequencing. The genomic organization of BCRV2 was characteristic of cytorhabdoviruses (family Rhabdoviridae) and included seven genes: 3 ́- N-P´-P-P3-M-G-L -5 ́. BLASTP analysis revealed that the putative L protein had the highest amino acid sequence identity (75 %) with strawberry virus 2. BCRV2 was detected in Cryptomyzusgaleopsidis, but efficient transmission by this aphid was not confirmed. Of note, we observed coinfection of the KB1 line with blackcurrant-associated rhabdovirus (BCaRV) by RT-PCR. This is likely the first evidence of the presence of a cyto- and a nucleorhabdovirus in a single host.
- Klíčová slova
- Ribes nigrum, aphid transmission, blackcurrant rhabdovirus 2, blackcurrant-associated rhabdovirus, electron microscopy, high throughput sequencing,
- MeSH
- fylogeneze MeSH
- genom virový MeSH
- koinfekce * genetika MeSH
- nemoci rostlin MeSH
- otevřené čtecí rámce MeSH
- Rhabdoviridae * genetika MeSH
- Ribes * MeSH
- šlechtění rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The genus Cytorhabdovirus includes plant viruses with an unsegmented, single-stranded, negative-sense RNA genome that infect various plant hosts. In this work, we report the detection of a new cytorhabdovirus infecting elderberry (Sambucus nigra L.). Total RNA was purified from infected leaves and, after ribodepletion, sequenced using an Illumina system. The RNA genome of viral isolate B15 is 12,622 nucleotides (nt) long, and that of isolate B42 is 12,621 nt long. A nearly complete sequence (12,592 nt) was also obtained for a third isolate (B160). The RNA genomes of all three isolates showed an organisation typical of cytorhabdoviruses, harbouring all six of the expected genes (3´ N-P-P3-M-G-L 5´), separated by intergenic regions. These isolates were closely related to each other (99.5-99.6% nt sequence identity) and showed the highest overall similarity to trichosanthes associated rhabdovirus 1 (63.5% identity) and Wuhan insect virus 5 (58% identity), and similar results were obtained when comparing individual coding sequences or proteins. Phylogenetic analysis confirmed that this elderberry virus, for which we propose the name "sambucus virus 1" belongs to the genus Cytorhabdovirus and fulfils the criteria to represent a novel species.
- MeSH
- bez černý * MeSH
- bez * genetika MeSH
- fylogeneze MeSH
- genom virový MeSH
- nemoci rostlin MeSH
- otevřené čtecí rámce MeSH
- Rhabdoviridae * MeSH
- RNA MeSH
- virové proteiny genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- RNA MeSH
- virové proteiny MeSH
Advances in high-throughput sequencing methods have boosted the discovery of multistrain viral infections in diverse plant systems. This phenomenon appears to be pervasive for certain viral species. However, our knowledge of the transmission aspects leading to the establishment of such mixed infections is limited. Recently, we reported a mixed infection of a single strawberry plant with strawberry mottle virus (SMoV), strawberry crinkle virus (SCV) and strawberry virus 1 (StrV-1). While SCV and StrV-1 are represented by two and three molecular variants, respectively, SmoV has three different RNA1 and RNA2 segments. In this study, we focus on virus acquisition by individual adult aphids of the Aphis gossypii, Aphis forbesi and Chaetosiphon fragaefolii species. Single-aphid transmission trials are performed under experimental conditions. Both different viruses and individual virus strains show varying performances in single aphid acquisition. The obtained data suggests that numerous individual transmission events lead to the establishment of multistrain infections. These data will be important for the development of epidemiological models in plant virology.
- Klíčová slova
- aphid transmission, multiple infections, plant virus, strawberry virus,
- MeSH
- jahodník * MeSH
- mšice * MeSH
- nemoci rostlin MeSH
- Rhabdoviridae * genetika MeSH
- Secoviridae * MeSH
- virové nemoci * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Palearctic bats host a diversity of lyssaviruses, though not the classical rabies virus (RABV). As surveillance for bat rabies over the Palearctic area covering Central and Eastern Europe and Siberian regions of Russia has been irregular, we lack data on geographic and seasonal patterns of the infection. RESULTS: To address this, we undertook serological testing, using non-lethally sampled blood, on 1027 bats of 25 species in Bulgaria, the Czech Republic, Poland, Russia and Slovenia between 2014 and 2018. The indirect enzyme-linked immunosorbent assay (ELISA) detected rabies virus anti-glycoprotein antibodies in 33 bats, giving an overall seroprevalence of 3.2%. Bat species exceeding the seroconversion threshold included Myotis blythii, Myotis gracilis, Myotis petax, Myotis myotis, Murina hilgendorfi, Rhinolophus ferrumequinum and Vespertilio murinus. While Myotis species (84.8%) and adult females (48.5%) dominated in seropositive bats, juveniles of both sexes showed no difference in seroprevalence. Higher numbers tested positive when sampled during the active season (10.5%), as compared with the hibernation period (0.9%). Bat rabies seroprevalence was significantly higher in natural habitats (4.0%) compared with synanthropic roosts (1.2%). Importantly, in 2018, we recorded 73.1% seroprevalence in a cave containing a M. blythii maternity colony in the Altai Krai of Russia. CONCLUSIONS: Identification of such "hotspots" of non-RABV lyssavirus circulation not only provides important information for public health protection, it can also guide research activities aimed at more in-depth bat rabies studies.
- Klíčová slova
- Chiroptera, Europe, Siberia, blood samples, rabies, seroprevalence,
- MeSH
- Chiroptera virologie MeSH
- ekosystém MeSH
- infekce viry z čeledi Rhabdoviridae epidemiologie MeSH
- jeskyně MeSH
- Lyssavirus izolace a purifikace MeSH
- protilátky virové krev MeSH
- roční období MeSH
- séroepidemiologické studie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa epidemiologie MeSH
- Rusko epidemiologie MeSH
- Názvy látek
- protilátky virové MeSH
The emergence of the novel ß-coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a global pandemic of coronavirus disease 2019 (COVID-19). Clinical studies have documented that potentially severe neurological symptoms are associated with SARS-CoV-2 infection, thereby suggesting direct CNS penetration by the virus. Prior studies have demonstrated that the destructive neurological effects of rabies virus (RABV) infections are mediated by CNS transport of the virus tightly bound to the nicotinic acetylcholine receptor (nAChR). By comparison, it has been hypothesized that a similar mechanism exists to explain the multiple neurological effects of SARS-CoV-2 via binding to peripheral nAChRs followed by orthograde or retrograde transport into the CNS. Genetic engineering of the RABV has been employed to generate novel vaccines consisting of non-replicating RABV particles expressing chimeric capsid proteins containing human immunodeficiency virus 1 (HIV-1), Middle East respiratory syndrome (MERS-CoV), Ebolavirus, and hepatitis C virus (HCV) sequences. Accordingly, we present a critical discussion that integrates lessons learned from prior RABV research and vaccine development into a working model of a SARS-CoV-2 vaccine that selectively targets and neutralizes CNS penetration of a tightly bound viral nAChR complex.
- MeSH
- Betacoronavirus chemie imunologie MeSH
- COVID-19 MeSH
- glykoprotein S, koronavirus chemie genetika imunologie MeSH
- koronavirové infekce imunologie metabolismus prevence a kontrola virologie MeSH
- lidé MeSH
- nikotinové receptory metabolismus MeSH
- pandemie MeSH
- proteinové domény MeSH
- replikace viru * MeSH
- SARS-CoV-2 MeSH
- vakcíny proti COVID-19 MeSH
- virová pneumonie imunologie virologie MeSH
- virové vakcíny chemie imunologie metabolismus MeSH
- virus vztekliny genetika fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glykoprotein S, koronavirus MeSH
- nikotinové receptory MeSH
- spike protein, SARS-CoV-2 MeSH Prohlížeč
- vakcíny proti COVID-19 MeSH
- virové vakcíny MeSH