Nejvíce citovaný článek - PubMed ID 37077987
ACORBA: Automated workflow to measure Arabidopsis thaliana root tip angle dynamics
The plant-signaling molecule auxin triggers fast and slow cellular responses across land plants and algae. The nuclear auxin pathway mediates gene expression and controls growth and development in land plants, but this pathway is absent from algal sister groups. Several components of rapid responses have been identified in Arabidopsis, but it is unknown if these are part of a conserved mechanism. We recently identified a fast, proteome-wide phosphorylation response to auxin. Here, we show that this response occurs across 5 land plant and algal species and converges on a core group of shared targets. We found conserved rapid physiological responses to auxin in the same species and identified rapidly accelerated fibrosarcoma (RAF)-like protein kinases as central mediators of auxin-triggered phosphorylation across species. Genetic analysis connects this kinase to both auxin-triggered protein phosphorylation and rapid cellular response, thus identifying an ancient mechanism for fast auxin responses in the green lineage.
- Klíčová slova
- RAF kinase, auxin, plant evolution, protein phosphorylation,
- MeSH
- Arabidopsis genetika metabolismus MeSH
- bílkoviny řas metabolismus MeSH
- fosforylace MeSH
- kyseliny indoloctové metabolismus MeSH
- proteinkinasy metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné proteiny metabolismus MeSH
- rostliny metabolismus MeSH
- signální transdukce * MeSH
- vyšší rostliny * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bílkoviny řas MeSH
- kyseliny indoloctové MeSH
- proteinkinasy MeSH
- rostlinné proteiny MeSH
Plant roots navigate in the soil environment following the gravity vector. Cell divisions in the meristem and rapid cell growth in the elongation zone propel the root tips through the soil. Actively elongating cells acidify their apoplast to enable cell wall extension by the activity of plasma membrane AHA H+-ATPases. The phytohormone auxin, central regulator of gravitropic response and root development, inhibits root cell growth, likely by rising the pH of the apoplast. However, the role of auxin in the regulation of the apoplastic pH gradient along the root tip is unclear. Here, we show, by using an improved method for visualization and quantification of root surface pH, that the Arabidopsis thaliana root surface pH shows distinct acidic and alkaline zones, which are not primarily determined by the activity of AHA H+-ATPases. Instead, the distinct domain of alkaline pH in the root transition zone is controlled by a rapid auxin response module, consisting of the AUX1 auxin influx carrier, the AFB1 auxin co-receptor, and the CNCG14 calcium channel. We demonstrate that the rapid auxin response pathway is required for an efficient navigation of the root tip.
- Klíčová slova
- A. thaliana, auxin, pH, plant biology, root,
- MeSH
- adenosintrifosfatasy metabolismus MeSH
- Arabidopsis * metabolismus MeSH
- kationtové kanály řízené cyklickými nukleotidy metabolismus MeSH
- koncentrace vodíkových iontů MeSH
- kořeny rostlin MeSH
- kyseliny indoloctové metabolismus MeSH
- proteiny huseníčku * metabolismus MeSH
- půda MeSH
- regulace genové exprese u rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfatasy MeSH
- AUX1 protein, Arabidopsis MeSH Prohlížeč
- CNGC14 protein, Arabidopsis MeSH Prohlížeč
- kationtové kanály řízené cyklickými nukleotidy MeSH
- kyseliny indoloctové MeSH
- proteiny huseníčku * MeSH
- půda MeSH
The phytohormone auxin triggers root growth inhibition within seconds via a non-transcriptional pathway. Among members of the TIR1/AFB auxin receptor family, AFB1 has a primary role in this rapid response. However, the unique features that confer this specific function have not been identified. Here we show that the N-terminal region of AFB1, including the F-box domain and residues that contribute to auxin binding, is essential and sufficient for its specific role in the rapid response. Substitution of the N-terminal region of AFB1 with that of TIR1 disrupts its distinct cytoplasm-enriched localization and activity in rapid root growth inhibition by auxin. Importantly, the N-terminal region of AFB1 is indispensable for auxin-triggered calcium influx, which is a prerequisite for rapid root growth inhibition. Furthermore, AFB1 negatively regulates lateral root formation and transcription of auxin-induced genes, suggesting that it plays an inhibitory role in canonical auxin signaling. These results suggest that AFB1 may buffer the transcriptional auxin response, whereas it regulates rapid changes in cell growth that contribute to root gravitropism.
- Klíčová slova
- Arabidopsis, auxin signaling, calcium, gravitropism, lateral root,
- MeSH
- Arabidopsis * metabolismus MeSH
- cytosol metabolismus MeSH
- F-box proteiny * metabolismus MeSH
- kořeny rostlin metabolismus MeSH
- kyseliny indoloctové farmakologie metabolismus MeSH
- proteiny huseníčku * metabolismus MeSH
- receptory buněčného povrchu genetika metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- F-box proteiny * MeSH
- kyseliny indoloctové MeSH
- proteiny huseníčku * MeSH
- receptory buněčného povrchu MeSH
- regulátory růstu rostlin MeSH