Nejvíce citovaný článek - PubMed ID 37524802
UNLABELLED: Glacier-fed streams are permanently cold, ultra-oligotrophic, and physically unstable environments, yet microbial life thrives in benthic biofilm communities. Within biofilms, microorganisms rely on secondary metabolites for communication and competition. However, the diversity and genetic potential of secondary metabolites in glacier-fed stream biofilms remain poorly understood. In this study, we present the first large-scale exploration of biosynthetic gene clusters (BGCs) from benthic glacier-fed stream biofilms sampled by the Vanishing Glaciers project from the world's major mountain ranges. We found a remarkable diversity of BGCs, with more than 8,000 of them identified within 2,868 prokaryotic metagenome-assembled genomes, some of them potentially conferring ecological advantages, such as UV protection and quorum sensing. The BGCs were distinct from those sourced from other aquatic microbiomes, with over 40% of them being novel. The glacier-fed stream BGCs exhibited the highest similarity to BGCs from glacier microbiomes. BGC composition displayed geographic patterns and correlated with prokaryotic alpha diversity. We also found that BGC diversity was positively associated with benthic chlorophyll a and prokaryotic diversity, indicative of more biotic interactions in more extensive biofilms. Our study provides new insights into a hitherto poorly explored microbial ecosystem, which is now changing at a rapid pace as glaciers are shrinking due to climate change. IMPORTANCE: Glacier-fed streams are characterized by low temperatures, high turbidity, and high flow. They host a unique microbiome within biofilms, which form the foundation of the food web and contribute significantly to biogeochemical cycles. Our investigation into secondary metabolites, which likely play an important role in these complex ecosystems, found a unique genetic potential distinct from other aquatic environments. We found the potential to synthesize several secondary metabolites, which may confer ecological advantages, such as UV protection and quorum sensing. This biosynthetic diversity was positively associated with the abundance and complexity of the microbial community, as well as concentrations of chlorophyll a. In the face of climate change, our study offers new insights into a vanishing ecosystem.
- Klíčová slova
- biofilms, glacier-fed streams, microbiomes, secondary metabolites,
- MeSH
- Bacteria genetika metabolismus MeSH
- biofilmy * růst a vývoj MeSH
- ledový příkrov * mikrobiologie MeSH
- metagenom MeSH
- mikrobiota MeSH
- multigenová rodina MeSH
- řeky * mikrobiologie chemie MeSH
- Publikační typ
- časopisecké články MeSH
Glacier-fed streams (GFS) feature among Earth's most extreme aquatic ecosystems marked by pronounced oligotrophy and environmental fluctuations. Microorganisms mainly organize in biofilms within them, but how they cope with such conditions is unknown. Here, leveraging 156 metagenomes from the Vanishing Glaciers project obtained from sediment samples in GFS from 9 mountains ranges, we report thousands of metagenome-assembled genomes (MAGs) encompassing prokaryotes, algae, fungi and viruses, that shed light on biotic interactions within glacier-fed stream biofilms. A total of 2,855 bacterial MAGs were characterized by diverse strategies to exploit inorganic and organic energy sources, in part via functional redundancy and mixotrophy. We show that biofilms probably become more complex and switch from chemoautotrophy to heterotrophy as algal biomass increases in GFS owing to glacier shrinkage. Our MAG compendium sheds light on the success of microbial life in GFS and provides a resource for future research on a microbiome potentially impacted by climate change.
- MeSH
- Bacteria * genetika klasifikace izolace a purifikace MeSH
- biodiverzita MeSH
- biofilmy růst a vývoj MeSH
- ekosystém MeSH
- fylogeneze MeSH
- geologické sedimenty mikrobiologie MeSH
- houby genetika klasifikace MeSH
- ledový příkrov * mikrobiologie MeSH
- metagenom * MeSH
- metagenomika MeSH
- mikrobiota * genetika MeSH
- řeky * mikrobiologie MeSH
- viry genetika klasifikace MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Picocyanobacteria from the genera Prochlorococcus, Synechococcus, and Cyanobium are the most widespread photosynthetic organisms in aquatic ecosystems. However, their freshwater populations remain poorly explored, due to uneven and insufficient sampling across diverse inland waterbodies. RESULTS: In this study, we present 170 high-quality genomes of freshwater picocyanobacteria from non-axenic cultures collected across Central Europe. In addition, we recovered 33 genomes of their potential symbiotic partners affiliated with four genera, Pseudomonas, Mesorhizobium, Acidovorax, and Hydrogenophaga. The genomic basis of symbiotic interactions involved heterotrophs benefiting from picocyanobacteria-derived nutrients while providing detoxification of ROS. The global abundance patterns of picocyanobacteria revealed ecologically significant ecotypes, associated with trophic status, temperature, and pH as key environmental factors. The adaptation of picocyanobacteria in (hyper-)eutrophic waterbodies could be attributed to their colonial lifestyles and CRISPR-Cas systems. The prevailing CRISPR-Cas subtypes in picocyanobacteria were I-G and I-E, which appear to have been acquired through horizontal gene transfer from other bacterial phyla. CONCLUSIONS: Our findings provide novel insights into the population diversity, ecology, and evolutionary strategies of the most widespread photoautotrophs within freshwater ecosystems. Video Abstract.
- Klíčová slova
- CRISPR-Cas, Freshwater, Genome collection, Picocyanobacteria, Symbiotic interaction,
- MeSH
- ekosystém MeSH
- fylogeneze * MeSH
- fyziologická adaptace genetika MeSH
- genom bakteriální * MeSH
- genomika MeSH
- přenos genů horizontální MeSH
- sinice * genetika klasifikace MeSH
- sladká voda * mikrobiologie MeSH
- symbióza * MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
Telonemia are one of the oldest identified marine protists that for most part of their history have been recognized as a distinct incertae sedis lineage. Today, their evolutionary proximity to the SAR supergroup (Stramenopiles, Alveolates, and Rhizaria) is firmly established. However, their ecological distribution and importance as a natural predatory flagellate, especially in freshwater food webs, still remain unclear. To unravel the distribution and diversity of the phylum Telonemia in freshwater habitats, we examined over a thousand freshwater metagenomes from all over the world. In addition, to directly quantify absolute abundances, we analyzed 407 samples from 97 lakes and reservoirs using Catalyzed Reporter Deposition-Fluorescence in situ Hybridization (CARD-FISH). We recovered Telonemia 18S rRNA gene sequences from hundreds of metagenomic samples from a wide variety of habitats, indicating a global distribution of this phylum. However, even after this extensive sampling, our phylogenetic analysis did not reveal any new major clades, suggesting current molecular surveys are near to capturing the full diversity within this group. We observed excellent concordance between CARD-FISH analyses and estimates of abundances from metagenomes. Both approaches suggest that Telonemia are largely absent from shallow lakes and prefer to inhabit the colder hypolimnion of lakes and reservoirs in the Northern Hemisphere, where they frequently bloom, reaching 10%-20% of the total heterotrophic flagellate population, making them important predatory flagellates in the freshwater food web.
- Klíčová slova
- CARD-FISH, Telonemia, freshwater lakes, metagenomics, microbial food webs, predatory flagellate,
- MeSH
- biodiverzita MeSH
- fylogeneze * MeSH
- hybridizace in situ fluorescenční * MeSH
- jezera mikrobiologie parazitologie MeSH
- metagenom MeSH
- metagenomika MeSH
- RNA ribozomální 18S * genetika MeSH
- sladká voda * mikrobiologie parazitologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA ribozomální 18S * MeSH