Nejvíce citovaný článek - PubMed ID 38071265
Wind energy plays a crucial role as a renewable source for electricity generation, especially in remote or isolated regions without access to the main power grid. The intermittent characteristics of wind energy make it essential to incorporate energy storage solutions to guarantee a consistent power supply. This study introduces the design, modeling, and control mechanisms of a self-sufficient wind energy conversion system (WECS) that utilizes a Permanent magnet synchronous generator (PMSG) in conjunction with a Water pumping storage station (WPS). The system employs Optimal torque control (OTC) to maximize power extraction from the wind turbine, achieving a peak power coefficient (Cp) of 0.43. A vector control strategy is applied to the PMSG, maintaining the DC bus voltage at a regulated 465 V for stable system operation. The integrated WPS operates in both motor and generator modes, depending on the excess or shortfall of generated wind energy relative to load demand. In generator mode, the WPS supplements power when wind speeds are insufficient, while in motor mode, it stores excess energy by pumping water to an upper reservoir. Simulation results, conducted in MATLAB/Simulink, show that the system efficiently tracks maximum power points and regulates key parameters. For instance, the PMSG successfully maintains the reference quadrature current, achieving optimal torque and power output. The system's response under varying wind speeds, with an average wind speed of 8 m/s, demonstrates that the generator speed closely follows turbine speed without a gearbox, leading to efficient power conversion. The results confirm the flexibility and robustness of the control strategies, ensuring continuous power delivery to the load. This makes the system a feasible solution for isolated, off-grid applications, contributing to advancements in renewable energy technologies and autonomous power generation systems.
The growing integration of renewable energy sources into grid-connected microgrids has created new challenges in power generation forecasting and energy management. This paper explores the use of advanced machine learning algorithms, specifically Support Vector Regression (SVR), to enhance the efficiency and reliability of these systems. The proposed SVR algorithm leverages comprehensive historical energy production data, detailed weather patterns, and dynamic grid conditions to accurately forecast power generation. Our model demonstrated significantly lower error metrics compared to traditional linear regression models, achieving a Mean Squared Error of 2.002 for solar PV and 3.059 for wind power forecasting. The Mean Absolute Error was reduced to 0.547 for solar PV and 0.825 for wind scenarios, and the Root Mean Squared Error (RMSE) was 1.415 for solar PV and 1.749 for wind power, showcasing the model's superior accuracy. Enhanced predictive accuracy directly contributes to optimized resource allocation, enabling more precise control of energy generation schedules and reducing the reliance on external power sources. The application of our SVR model resulted in an 8.4% reduction in overall operating costs, highlighting its effectiveness in improving energy management efficiency. Furthermore, the system's ability to predict fluctuations in energy output allowed for adaptive real-time energy management, reducing grid stress and enhancing system stability. This approach led to a 10% improvement in the balance between supply and demand, a 15% reduction in peak load demand, and a 12% increase in the utilization of renewable energy sources. Our approach enhances grid stability by better balancing supply and demand, mitigating the variability and intermittency of renewable energy sources. These advancements promote a more sustainable integration of renewable energy into the microgrid, contributing to a cleaner, more resilient, and efficient energy infrastructure. The findings of this research provide valuable insights into the development of intelligent energy systems capable of adapting to changing conditions, paving the way for future innovations in energy management. Additionally, this work underscores the potential of machine learning to revolutionize energy management practices by providing more accurate, reliable, and cost-effective solutions for integrating renewable energy into existing grid infrastructures.
- Klíčová slova
- Artificial intelligence, Cognitive science, Distributed generation, Energy management, Microgrid, Optimization, Predictive modeling, Renewable energy, Support vector regression,
- Publikační typ
- časopisecké články MeSH
Researchers are increasingly focusing on renewable energy due to its high reliability, energy independence, efficiency, and environmental benefits. This paper introduces a novel multi-objective framework for the short-term scheduling of microgrids (MGs), which addresses the conflicting objectives of minimizing operating expenses and reducing pollution emissions. The core contribution is the development of the Chaotic Self-Adaptive Sine Cosine Algorithm (CSASCA). This algorithm generates Pareto optimal solutions simultaneously, effectively balancing cost reduction and emission mitigation. The problem is formulated as a complex multi-objective optimization task with goals of cost reduction and environmental protection. To enhance decision-making within the algorithm, fuzzy logic is incorporated. The performance of CSASCA is evaluated across three scenarios: (1) PV and wind units operating at full power, (2) all units operating within specified limits with unrestricted utility power exchange, and (3) microgrid operation using only non-zero-emission energy sources. This third scenario highlights the algorithm's efficacy in a challenging context not covered in prior research. Simulation results from these scenarios are compared with traditional Sine Cosine Algorithm (SCA) and other recent optimization methods using three test examples. The innovation of CSASCA lies in its chaotic self-adaptive mechanisms, which significantly enhance optimization performance. The integration of these mechanisms results in superior solutions for operation cost, emissions, and execution time. Specifically, CSASCA achieves optimal values of 590.45 €ct for cost and 337.28 kg for emissions in the first scenario, 98.203 €ct for cost and 406.204 kg for emissions in the second scenario, and 95.38 €ct for cost and 982.173 kg for emissions in the third scenario. Overall, CSASCA outperforms traditional SCA by offering enhanced exploration, improved convergence, effective constraint handling, and reduced parameter sensitivity, making it a powerful tool for solving multi-objective optimization problems like microgrid scheduling.
- Klíčová slova
- Energy management, Micro-grid (MG), Multi-objective optimization, Photovoltaic (PV), Renewable energy sources (RESs), Sine cosine algorithm, Wind turbine (WT),
- Publikační typ
- časopisecké články MeSH
The use of plug-in hybrid electric vehicles (PHEVs) provides a way to address energy and environmental issues. Integrating a large number of PHEVs with advanced control and storage capabilities can enhance the flexibility of the distribution grid. This study proposes an innovative energy management strategy (EMS) using an Iterative map-based self-adaptive crystal structure algorithm (SaCryStAl) specifically designed for microgrids with renewable energy sources (RESs) and PHEVs. The goal is to optimize multi-objective scheduling for a microgrid with wind turbines, micro-turbines, fuel cells, solar photovoltaic systems, and batteries to balance power and store excess energy. The aim is to minimize microgrid operating costs while considering environmental impacts. The optimization problem is framed as a multi-objective problem with nonlinear constraints, using fuzzy logic to aid decision-making. In the first scenario, the microgrid is optimized with all RESs installed within predetermined boundaries, in addition to grid connection. In the second scenario, the microgrid operates with a wind turbine at rated power. The third case study involves integrating plug-in hybrid electric vehicles (PHEVs) into the microgrid in three charging modes: coordinated, smart, and uncoordinated, utilizing standard and rated RES power. The SaCryStAl algorithm showed superior performance in operation cost, emissions, and execution time compared to traditional CryStAl and other recent optimization methods. The proposed SaCryStAl algorithm achieved optimal solutions in the first scenario for cost and emissions at 177.29 €ct and 469.92 kg, respectively, within a reasonable time frame. In the second scenario, it yielded optimal cost and emissions values of 112.02 €ct and 196.15 kg, respectively. Lastly, in the third scenario, the SaCryStAl algorithm achieves optimal cost values of 319.9301 €ct, 160.9827 €ct and 128.2815 €ct for uncoordinated charging, coordinated charging and smart charging modes respectively. Optimization results reveal that the proposed SaCryStAl outperformed other evolutionary optimization algorithms, such as differential evolution, CryStAl, Grey Wolf Optimizer, particle swarm optimization, and genetic algorithm, as confirmed through test cases.
Promoting renewable energy sources, particularly in the solar industry, has the potential to address the energy shortfall in Central Africa. Nevertheless, a difficulty occurs due to the erratic characteristics of solar irradiance data, which is influenced by climatic fluctuations and challenging to regulate. The current investigation focuses on predicting solar irradiance on an inclined surface, taking into consideration the impact of climatic variables such as temperature, wind speed, humidity, and air pressure. The used methodology for this objective is Artificial Neural Network (ANN), and the inquiry is carried out in the metropolitan region of Douala. The data collection device used in this research is the meteorological station located at the IUT of Douala. This station was built as a component of the Douala sustainable city effort, in partnership with the CUD and the IRD. Data was collected at 30-min intervals for a duration of around 2 years, namely from January 17, 2019, to October 30, 2020. The aforementioned data has been saved in a database that underwent pre-processing in Excel and later employed MATLAB for the creation of the artificial neural network model. 80% of the available data was utilized for training the network, 15% was allotted for validation, and the remaining 5% was used for testing. Different combinations of input data were evaluated to ascertain their individual degrees of accuracy. The logistic Sigmoid function, with 50 hidden layer neurons, yielded a correlation coefficient of 98.883% between the observed and estimated sun irradiation. This function is suggested for evaluating the intensities of solar radiation at the place being researched and at other sites that have similar climatic conditions.
- Klíčová slova
- Feed-forward network, Multilayer perceptron, Neural network, Solar radiation,
- Publikační typ
- časopisecké články MeSH