Multi-objective optimization
Dotaz
Zobrazit nápovědu
Researchers are increasingly focusing on renewable energy due to its high reliability, energy independence, efficiency, and environmental benefits. This paper introduces a novel multi-objective framework for the short-term scheduling of microgrids (MGs), which addresses the conflicting objectives of minimizing operating expenses and reducing pollution emissions. The core contribution is the development of the Chaotic Self-Adaptive Sine Cosine Algorithm (CSASCA). This algorithm generates Pareto optimal solutions simultaneously, effectively balancing cost reduction and emission mitigation. The problem is formulated as a complex multi-objective optimization task with goals of cost reduction and environmental protection. To enhance decision-making within the algorithm, fuzzy logic is incorporated. The performance of CSASCA is evaluated across three scenarios: (1) PV and wind units operating at full power, (2) all units operating within specified limits with unrestricted utility power exchange, and (3) microgrid operation using only non-zero-emission energy sources. This third scenario highlights the algorithm's efficacy in a challenging context not covered in prior research. Simulation results from these scenarios are compared with traditional Sine Cosine Algorithm (SCA) and other recent optimization methods using three test examples. The innovation of CSASCA lies in its chaotic self-adaptive mechanisms, which significantly enhance optimization performance. The integration of these mechanisms results in superior solutions for operation cost, emissions, and execution time. Specifically, CSASCA achieves optimal values of 590.45 €ct for cost and 337.28 kg for emissions in the first scenario, 98.203 €ct for cost and 406.204 kg for emissions in the second scenario, and 95.38 €ct for cost and 982.173 kg for emissions in the third scenario. Overall, CSASCA outperforms traditional SCA by offering enhanced exploration, improved convergence, effective constraint handling, and reduced parameter sensitivity, making it a powerful tool for solving multi-objective optimization problems like microgrid scheduling.
- Klíčová slova
- Energy management, Micro-grid (MG), Multi-objective optimization, Photovoltaic (PV), Renewable energy sources (RESs), Sine cosine algorithm, Wind turbine (WT),
- Publikační typ
- časopisecké články MeSH
The high proportion of CO2/CH4 in low aggregated value natural gas compositions can be used strategically and intelligently to produce more hydrocarbons through oxidative methane coupling (OCM). The main goal of this study was to optimize direct low-value natural gas conversion via CO2-OCM on metal oxide catalysts using robust multi-objective optimization based on an entropic measure to choose the most preferred Pareto optimal point as the problem's final solution. The responses of CH4 conversion, C2 selectivity, and C2 yield are modeled using the response surface methodology. In this methodology, decision variables, e.g., the CO2/CH4 ratio, reactor temperature, wt.% CaO and wt.% MnO in ceria catalyst, are all employed. The Pareto optimal solution was obtained via the following combination of process parameters: CO2/CH4 ratio = 2.50, reactor temperature = 1179.5 K, wt.% CaO in ceria catalyst = 17.2%, wt.% MnO in ceria catalyst = 6.0%. By using the optimal weighting strategy w1 = 0.2602, w2 = 0.3203, w3 = 0.4295, the simultaneous optimal values for the objective functions were: CH4 conversion = 8.806%, C2 selectivity = 51.468%, C2 yield = 3.275%. Finally, an entropic measure used as a decision-making criterion was found to be useful in mapping the regions of minimal variation among the Pareto optimal responses and the results obtained, and this demonstrates that the optimization weights exert influence on the forecast variation of the obtained response.
In this study, we present a comprehensive optimization framework employing the Multi-Objective Multi-Verse Optimization (MOMVO) algorithm for the optimal integration of Distributed Generations (DGs) and Capacitor Banks (CBs) into electrical distribution networks. Designed with the dual objectives of minimizing energy losses and voltage deviations, this framework significantly enhances the operational efficiency and reliability of the network. Rigorous simulations on the standard IEEE 33-bus and IEEE 69-bus test systems underscore the effectiveness of the MOMVO algorithm, demonstrating up to a 47% reduction in energy losses and up to a 55% improvement in voltage stability. Comparative analysis highlights MOMVO's superiority in terms of convergence speed and solution quality over leading algorithms such as the Multi-Objective Jellyfish Search (MOJS), Multi-Objective Flower Pollination Algorithm (MOFPA), and Multi-Objective Lichtenberg Algorithm (MOLA). The efficacy of the study is particularly evident in the identification of the best compromise solutions using MOMVO. For the IEEE 33 network, the application of MOMVO led to a significant 47.58% reduction in daily energy loss and enhanced voltage profile stability from 0.89 to 0.94 pu. Additionally, it realized a 36.97% decrease in the annual cost of energy losses, highlighting substantial economic benefits. For the larger IEEE 69 network, MOMVO achieved a remarkable 50.15% reduction in energy loss and improved voltage profiles from 0.89 to 0.93 pu, accompanied by a 47.59% reduction in the annual cost of energy losses. These results not only confirm the robustness of the MOMVO algorithm in optimizing technical and economic efficiencies but also underline the potential of advanced optimization techniques in facilitating the sustainable integration of renewable energy resources into existing power infrastructures. This research significantly contributes to the field of electrical distribution network optimization, paving the way for future advancements in renewable energy integration and optimization techniques for enhanced system efficiency, reliability, and sustainability.
This research investigates the machinability of Inconel 718 under conventional machining speeds using three different tool coatings in comparison with uncoated tool during milling operation. Cutting speed, feed rate and depth of cut were selected as variable machining parameters to analyze output responses including surface roughness, burr formation and tool wear. It was found that uncoated and AlTiN coated tools resulted in lower tool wear than nACo and TiSiN coated tools. On the other hand, TiSiN coated tools resulted in highest surface roughness and burr formation. Among the three machining parameters, feed was identified as the most influential parameter affecting burr formation. Grey relational analysis identified the most optimal experimental run with a speed of 14 m/min, feed of 1 μm/tooth, and depth of cut of 70 μm using an AlTiN coated tool. ANOVA of the regression model identified the tool coating parameter as most effective, with a contribution ratio of 41.64%, whereas cutting speed and depth of cut were found to have contribution ratios of 18.82% and 8.10%, respectively. Experimental run at response surface optimized conditions resulted in reduced surface roughness and tool wear by 18% and 20%, respectively.
- Klíčová slova
- Inconel 718, grey relational analysis, machining, multi-objective optimization,
- Publikační typ
- časopisecké články MeSH
This research introduces the Multi-Objective Liver Cancer Algorithm (MOLCA), a novel approach inspired by the growth and proliferation patterns of liver tumors. MOLCA emulates the evolutionary tendencies of liver tumors, leveraging their expansion dynamics as a model for solving multi-objective optimization problems in engineering design. The algorithm uniquely combines genetic operators with the Random Opposition-Based Learning (ROBL) strategy, optimizing both local and global search capabilities. Further enhancement is achieved through the integration of elitist non-dominated sorting (NDS), information feedback mechanism (IFM) and Crowding Distance (CD) selection method, which collectively aim to efficiently identify the Pareto optimal front. The performance of MOLCA is rigorously assessed using a comprehensive set of standard multi-objective test benchmarks, including ZDT, DTLZ and various Constraint (CONSTR, TNK, SRN, BNH, OSY and KITA) and real-world engineering design problems like Brushless DC wheel motor, Safety isolating transformer, Helical spring, Two-bar truss and Welded beam. Its efficacy is benchmarked against prominent algorithms such as the non-dominated sorting grey wolf optimizer (NSGWO), multiobjective multi-verse optimization (MOMVO), non-dominated sorting genetic algorithm (NSGA-II), decomposition-based multiobjective evolutionary algorithm (MOEA/D) and multiobjective marine predator algorithm (MOMPA). Quantitative analysis is conducted using GD, IGD, SP, SD, HV and RT metrics to represent convergence and distribution, while qualitative aspects are presented through graphical representations of the Pareto fronts. The MOLCA source code is available at: https://github.com/kanak02/MOLCA.
- Klíčová slova
- Engineering design optimization, Liver cancer algorithm, MOLCA, Multi objective optimization, Non-dominated solution, Pareto front, Pareto solution,
- Publikační typ
- časopisecké články MeSH
Electric train system is a very large load for the power network. This load consumes a large amount of reactive power. In addition, it causes a massive unbalance to the network, which results in many problems such as voltage drops, high transmission losses, reduction in the transformer output ability, negative sequence current, mal-operation of protective relays, etc. In this paper, a novel real-time optimization approach is presented to adjust the static VAR compensator (SVC) for the traction system to realize two objectives; current unbalance reduction and reactive power compensation. A multi-objective optimization technique entitled non-dominated sorting genetic algorithm (NSGA-II) is used to fulfill the regarded objectives simultaneously. A comprehensive simulator has been designed for electric train network modeling that is able to adjust the parameters of SVC in an optimum manner at any time and under any circumstances. The results illustrate that the provided method can efficiently reduce the unbalancing in current as well as supply the demanded reactive power with acceptable precision.
- Klíčová slova
- SVC, current unbalance, multi-objective optimization, reactive power compensation, traction system,
- Publikační typ
- časopisecké články MeSH
The paradigm of dynamic shared access aims to provide flexible spectrum usage. Recently, Federal Communications Commission (FCC) has proposed a new dynamic spectrum management framework for the sharing of a 3.5 GHz (3550-3700 MHz) federal band, called a citizen broadband radio service (CBRS) band, which is governed by spectrum access system (SAS). It is the responsibility of SAS to manage the set of CBRS-SAS users. The set of users are classified in three tiers: incumbent access (IA) users, primary access license (PAL) users and the general authorized access (GAA) users. In this article, dynamic channel assignment algorithm for PAL and GAA users is designed with the goal of maximizing the transmission rate and minimizing the total cost of GAA users accessing PAL reserved channels. We proposed a new mathematical model based on multi-objective optimization for the selection of PAL operators and idle PAL reserved channels allocation to GAA users considering the diversity of PAL reserved channels' attributes and the diversification of GAA users' business needs. The proposed model is estimated and validated on various performance metrics through extensive simulations and compared with existing algorithms such as Hungarian algorithm, auction algorithm and Gale-Shapley algorithm. The proposed model results indicate that overall transmission rate, net cost and data-rate per unit cost remain the same in comparison to the classical Hungarian method and auction algorithm. However, the improved model solves the resource allocation problem approximately up to four times faster with better load management, which validates the efficiency of our model.
- Klíčová slova
- 5G, CBRS, SAS, channel assignment, linear assignment problems, multiobjective, optimization,
- Publikační typ
- časopisecké články MeSH
In this study, we tackle the challenge of optimizing the design of a Brushless Direct Current (BLDC) motor. Utilizing an established analytical model, we introduced the Multi-Objective Generalized Normal Distribution Optimization (MOGNDO) method, a biomimetic approach based on Pareto optimality, dominance, and external archiving. We initially tested MOGNDO on standard multi-objective benchmark functions, where it showed strong performance. When applied to the BLDC motor design with the objectives of either maximizing operational efficiency or minimizing motor mass, the MOGNDO algorithm consistently outperformed other techniques like Ant Lion Optimizer (ALO), Ion Motion Optimization (IMO), and Sine Cosine Algorithm (SCA). Specifically, MOGNDO yielded the most optimal values across efficiency and mass metrics, providing practical solutions for real-world BLDC motor design. The MOGNDO source code is available at: https://github.com/kanak02/MOGNDO.
- Klíčová slova
- BLDC motor, Electromagnetics, Metaheuristic, Non-dominated sorting generalized normal distribution optimization,
- Publikační typ
- časopisecké články MeSH
The exponential distribution optimizer (EDO) represents a heuristic approach, capitalizing on exponential distribution theory to identify global solutions for complex optimization challenges. This study extends the EDO's applicability by introducing its multi-objective version, the multi-objective EDO (MOEDO), enhanced with elite non-dominated sorting and crowding distance mechanisms. An information feedback mechanism (IFM) is integrated into MOEDO, aiming to balance exploration and exploitation, thus improving convergence and mitigating the stagnation in local optima, a notable limitation in traditional approaches. Our research demonstrates MOEDO's superiority over renowned algorithms such as MOMPA, NSGA-II, MOAOA, MOEA/D and MOGNDO. This is evident in 72.58% of test scenarios, utilizing performance metrics like GD, IGD, HV, SP, SD and RT across benchmark test collections (DTLZ, ZDT and various constraint problems) and five real-world engineering design challenges. The Wilcoxon Rank Sum Test (WRST) further confirms MOEDO as a competitive multi-objective optimization algorithm, particularly in scenarios where existing methods struggle with balancing diversity and convergence efficiency. MOEDO's robust performance, even in complex real-world applications, underscores its potential as an innovative solution in the optimization domain. The MOEDO source code is available at: https://github.com/kanak02/MOEDO .
- Publikační typ
- časopisecké články MeSH
Monel K-500 is a high-performance superalloy composed of nickel and copper, renowned for its exceptional strength, hardness, and resistance to corrosion. To machine this material more precisely and accurately, Electrical Discharge Machining (EDM) is one of the best choices. In EDM, material removal rate (MRR) and electrode wear rate (EWR) are crucial performance parameters that are often conflicting in nature. These parameters depend on several input variables, including peak current (Ip), pulse on time (Ton), duty cycle (Tau), and servo voltage (SV). Optimizing the EDM process is essential for enhancing performance. In this research, a set of experiments were conducted using EDM on Monel K500 alloy to determine the optimal process parameters. The Box-Behnken design was used to prepare the experimental design matrix. Utilizing the experimental data, a second-order mathematical model was developed using Response Surface Methodology (RSM). R2 value is found to be 99.40% and 96.60% for MRR and EWR RSM-based prediction model, respectively. High value of R2 is indicated is indicated good adequacy for prediction. The mathematical model further used in multi-objective dragonfly algorithm (MODA): a new meta-heuristic optimization technique to solve multi-objective optimization problem of EDM. The MODA is a very useful technique to achieve optimal solutions from the multi decision criteria. Utilizing this technique, a set of non-dominated solutions was obtained. Further, the TOPSIS method was used to determine the most desirable optimal solution, which was found to be 0.0135 mm3/min for EWR and 6.968 mm3/min for MRR. These results were obtained when the optimal process parameters were selected as Ip = 6 A, Ton = 200 µs, Tau = 12, and SV = 41.6 V. Operators can machine Monel K500 by selecting the above-mentioned optimal parameters to achieve the best performance.
- Klíčová slova
- EDM, MODA, Monel K-500, RSM,
- Publikační typ
- časopisecké články MeSH