Most cited article - PubMed ID 38594306
Expedient production of site specifically nucleobase-labelled or hypermodified RNA with engineered thermophilic DNA polymerases
We designed and synthesized a set of six 2'-deoxyribonucleoside 5'-O-triphosphates (dNTPs) bearing functional groups mimicking amino acid side chains in enzyme active sites (OH, SH, COOH, and imidazole) attached to position 5 of pyrimidines or position 7 of 7-deazapurines through different linkers. These modified dNTPs were studied as substrates in enzymatic synthesis of modified and hypermodified DNA using several DNA polymerases. In primer extension (PEX), all modified dNTPs provided DNA containing one, two, three, or, (all) four modified nucleotides each bearing a different modification, although the thiol-modified dNTPs were worse substrates compared to the others. In PCR, we observed exponential amplification for any combination of one, two, or three nonsulfur dNTPs but the thiol-modified dNTP did not work well in any combinations. Sequencing of the hypermodified DNA confirmed the good fidelity of the incorporation of all the modified nucleotides. This set of modified dNTPs extends the portfolio of building blocks for prospective use in selections of functional nucleic acids.
- Keywords
- DNA, enzymatic syntheses, nucleotides, polymerases,
- MeSH
- DNA-Directed DNA Polymerase * metabolism chemistry MeSH
- DNA * chemistry chemical synthesis MeSH
- Imidazoles * chemistry MeSH
- Catalytic Domain MeSH
- Carboxylic Acids * chemistry MeSH
- Polymerase Chain Reaction MeSH
- Sulfhydryl Compounds * chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- 7-deazapurine MeSH Browser
- DNA-Directed DNA Polymerase * MeSH
- DNA * MeSH
- imidazole MeSH Browser
- Imidazoles * MeSH
- Carboxylic Acids * MeSH
- Purines MeSH
- Sulfhydryl Compounds * MeSH
A series of adenosine triphosphate (ATP) derivatives bearing chloro, fluoro, amino, methyl, vinyl, and ethynyl groups at position 2 are synthesized and tested as substrates for RNA and DNA polymerases. The modified nucleotides work well in in vitro transcription with T7 RNA polymerase and primer extension (PEX) using engineered DNA polymerases (TGK, 2M) except for the bulkier 2-vinyl- and 2-ethynyl-ATP derivatives that give truncated products. However, in single nucleotide incorporation followed by PEX, they still can be used for site-specific incorporation of reactive modifications into RNA that can be further used for postsynthetic labeling through thiol-ene or Cu-catalyzed alkyne-azide cycloadditions reactions. All modified ATPs work in polyadenylation catalyzed by poly(A) polymerase to form long 3'-polyA tails containing the modifications that also can be used for labeling.
- Keywords
- DNA polymerases, RNA polymerases, click reactions, nucleosides triphosphates, nucleotides, polyA polymerase, thiol‐ene addition,
- MeSH
- Adenosine Triphosphate * chemical synthesis chemistry analogs & derivatives metabolism MeSH
- Cycloaddition Reaction MeSH
- DNA-Directed RNA Polymerases * metabolism chemistry MeSH
- DNA-Directed DNA Polymerase * metabolism chemistry MeSH
- RNA * chemistry metabolism MeSH
- Viral Proteins metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Adenosine Triphosphate * MeSH
- bacteriophage T7 RNA polymerase MeSH Browser
- DNA-Directed RNA Polymerases * MeSH
- DNA-Directed DNA Polymerase * MeSH
- RNA * MeSH
- Viral Proteins MeSH
We designed and synthesized a set of four 2'-deoxyribonucleoside 5'-O-triphosphates (dNTPs) bearing cationic substituents (protonated amino, methylamino, dimethylamino and trimethylammonium groups) attached to position 5 of pyrimidines or position 7 of 7-deazapurines through hex-1-ynyl or propargyl linker. These cationic dNTPs were studied as substrates in enzymatic synthesis of modified and hypermodified DNA using KOD XL DNA polymerase. In primer extension (PEX), we successfully obtained DNA containing one, two, three, or (all) four modified nucleotides, each bearing a different cationic modification. The cationic dNTPs were somewhat worse substrates compared to previously studied dNTPs bearing hydrophobic or anionic modifications, but the polymerase was still able to synthesize sequences up to 73 modified nucleotides. We also successfully combined one cationic modification with one anionic and two hydrophobic modifications in PEX. In polymerase chain reaction (PCR), we observed exponential amplification only in the case of one cationic modification, while the combination of more cationic nucleotides gave either very low amplification or no PCR product. The hypermodified oligonucleotides prepared by PEX were successfully re-PCRed and sequenced by Sanger sequencing. Biophysical studies of hybridization, denaturation, and circular dichroism spectroscopy showed that the presence of cationic modifications increases the stability of duplexes.
- MeSH
- Deoxyribonucleotides * chemistry chemical synthesis MeSH
- DNA-Directed DNA Polymerase * metabolism MeSH
- DNA * chemistry biosynthesis chemical synthesis MeSH
- Hydrophobic and Hydrophilic Interactions MeSH
- Cations chemistry MeSH
- Polymerase Chain Reaction MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Deoxyribonucleotides * MeSH
- DNA-Directed DNA Polymerase * MeSH
- DNA * MeSH
- Cations MeSH
Protein-RNA interactions play important biological roles and hence reactive RNA probes for cross-linking with proteins are important tools in their identification and study. To this end, we designed and synthesized 5'-O-triphosphates bearing a reactive squaramate group attached to position 5 of cytidine or position 7 of 7-deazaadenosine and used them as substrates for polymerase synthesis of modified RNA. In vitro transcription with T7 RNA polymerase or primer extension using TGK polymerase was used for synthesis of squaramate-modified RNA probes which underwent covalent bioconjugations with amine-linked fluorophore and lysine-containing peptides and proteins including several viral RNA polymerases or HIV reverse transcriptase. Inhibition of RNA-depending RNA polymerases from Japanese Encephalitis virus was observed through formation of covalent cross-link which was partially identified by MS/MS analysis. Thus, the squaramate-linked NTP analogs are useful building blocks for the synthesis of reactive RNA probes for bioconjugations with primary amines and cross-linking with lysine residues.
- Publication type
- Journal Article MeSH