Most cited article - PubMed ID 38977792
Multi-objective energy management in a renewable and EV-integrated microgrid using an iterative map-based self-adaptive crystal structure algorithm
The rising energy demand, substantial transmission and distribution losses, and inconsistent power quality in remote regions highlight the urgent need for innovative solutions to ensure a stable electricity supply. Microgrids (MGs), integrated with distributed generation (DG), offer a promising approach to address these challenges by enabling localized power generation, improved grid flexibility, and enhanced reliability. This paper introduces the Improved Lyrebird Optimization Algorithm (ILOA) for optimal sectionalizing and scheduling of multi-microgrid systems, aiming to minimize generation costs and active power losses while ensuring system reliability. To enhance search efficiency, ILOA incorporates the Levy Flight technique for local search, which introduces adaptive step sizes with long-distance jumps, improving the exploration-exploitation balance. Unlike conventional local search strategies that rely on fixed step sizes, Levy Flight prevents premature convergence by allowing the algorithm to escape local optima and explore the solution space more effectively. Additionally, a chaotic sine map is integrated to enhance global search capability, ensuring better diversity and superior optimization performance compared to traditional algorithms. Simulation studies are conducted on a modified 33-bus distribution system segmented into three independent microgrids. The algorithm is evaluated under single-objective scenarios (cost and loss minimization) and a multi-objective optimization framework combining both objectives. In single-objective optimization, ILOA achieves a generation cost of $19,254.64/hr with 0.7118 kW of power loss, demonstrating marginal improvements over the standard Lyrebird Optimization Algorithm and significant gains over Genetic Algorithm (GA) and Jaya Algorithm (JAYA). In multi-objective optimization, ILOA surpasses competing methods by achieving a generation cost of $89,792.18/hr and 10.26 kW of power loss. The optimization results indicate that, for the IEEE-33 bus system without considering EIR, the proposed ILOA algorithm achieves savings of approximately 0.0014%, 0.0041%, and 0.657% in operation costs compared to LOA, JAYA, and GA, respectively, when MG-1, MG-2, and MG-3 are operational. The analysis of real power loss reduction demonstrates that, in the IEEE-33 bus system without considering EIR, the proposed ILOA algorithm effectively minimizes power loss by approximately 0.692%, 1.696%, and 1.962% in comparison to LOA, JAYA, and GA, respectively, under the operational conditions of MG-1, MG-2, and MG-3. Additionally, reliability constraints based on the Energy Index of Reliability (EIR) are effectively incorporated, further validating the robustness of the proposed approach. Considering EIR, the real power loss analysis for the IEEE-33 bus system highlights that the proposed ILOA algorithm achieves a reduction of approximately 1.319%, 2.069%, and 2.134% in comparison to LOA, JAYA, and GA, respectively, under the operational scenario where MG-1, MG-2, and MG-3 are active. The results confirm that ILOA is a highly efficient and reliable solution for distributed generation scheduling and multi-microgrid sectionalizing, showcasing its potential for real-world applications such as dynamic economic dispatch and demand response integration in smart grid systems.
The exponential deployment of electric vehicles (EVs) in the residential sectors in recent years allows better energy utilization in the decentralized and centralized levels of distribution systems due to their bidirectional operation and energy storage capabilities. However, to execute these, it is necessary to adopt residential demand side management (RDSM) to schedule energy utilization effectively to fetch economical and efficient energy consumption and grid stability and reliability, particularly during peak load conditions. The paper aims to formulate a robust and efficient RDSM technique to provide an energy utilization scheduling considering various influential factors and critical roles of EVs in RDSM. A Binary Whale Optimization Algorithm (BWOA) approach is proposed as an efficient algorithm for EV's impact on the RDSM for better energy scheduling. A single-objective formulation is presented with detailed modelling considering economic energy utilization as the primary objective with all possible equality and inequality system operational constraints. Secondly, the impact of EVs on the RDSM is studied from various perspectives in result analysis, considering EVs as load, storage devices, and different bidirectional modes of operation with other vehicles, residential components, and grids. In addition, the EVs role and the mutual influence with the integration of renewable energy sources (RES) and energy storage devices (ESDs) are extensively analyzed to provide better residential energy management (REM) in terms of economic, environmental, robust, and reliable points of view. The load priority based on consumer choice is also incorporated in the formulation. Extensive simulation is done for the proposed approach to show the effect of EVs on REM, and the results are impressive to show the EV's role as a load, as a storage device, and as a mutually supportive device to RES, ESD, and grid.
Demand-side management (DSM) enhances distribution network efficiency by shifting or reducing loads, alleviating network stress. The Load Shifting Policy (LSP) reallocates flexible loads to low-price periods without altering total demand, while the Load Curtailing Policy (LCP) incentivizes consumers to reduce peak demand. This study introduces a hybrid DSM approach that combines LSP and LCP with a smart charging strategy for plug-in hybrid electric vehicles (PHEVs). Using the hybrid load shifting and curtailment policy (HLSCP), the microgrid (MG) load profile was optimized, reducing generation costs from 707¥ for the base load to 682¥ with HLSCP and 676¥ when incorporating smart PHEV charging. Emissions decreased correspondingly, from 1267kg to 1246kg. These results demonstrate the hybrid DSM's capacity to tackle economic and environmental challenges in power systems. The Differential Evolution (DE) optimization method further validated the robustness and efficiency of this cost-effective, sustainable microgrid management approach.
- Keywords
- Energy Resources, Energy engineering, Energy systems, Environmental policy,
- Publication type
- Journal Article MeSH
The growing integration of renewable energy sources into grid-connected microgrids has created new challenges in power generation forecasting and energy management. This paper explores the use of advanced machine learning algorithms, specifically Support Vector Regression (SVR), to enhance the efficiency and reliability of these systems. The proposed SVR algorithm leverages comprehensive historical energy production data, detailed weather patterns, and dynamic grid conditions to accurately forecast power generation. Our model demonstrated significantly lower error metrics compared to traditional linear regression models, achieving a Mean Squared Error of 2.002 for solar PV and 3.059 for wind power forecasting. The Mean Absolute Error was reduced to 0.547 for solar PV and 0.825 for wind scenarios, and the Root Mean Squared Error (RMSE) was 1.415 for solar PV and 1.749 for wind power, showcasing the model's superior accuracy. Enhanced predictive accuracy directly contributes to optimized resource allocation, enabling more precise control of energy generation schedules and reducing the reliance on external power sources. The application of our SVR model resulted in an 8.4% reduction in overall operating costs, highlighting its effectiveness in improving energy management efficiency. Furthermore, the system's ability to predict fluctuations in energy output allowed for adaptive real-time energy management, reducing grid stress and enhancing system stability. This approach led to a 10% improvement in the balance between supply and demand, a 15% reduction in peak load demand, and a 12% increase in the utilization of renewable energy sources. Our approach enhances grid stability by better balancing supply and demand, mitigating the variability and intermittency of renewable energy sources. These advancements promote a more sustainable integration of renewable energy into the microgrid, contributing to a cleaner, more resilient, and efficient energy infrastructure. The findings of this research provide valuable insights into the development of intelligent energy systems capable of adapting to changing conditions, paving the way for future innovations in energy management. Additionally, this work underscores the potential of machine learning to revolutionize energy management practices by providing more accurate, reliable, and cost-effective solutions for integrating renewable energy into existing grid infrastructures.
- Keywords
- Artificial intelligence, Cognitive science, Distributed generation, Energy management, Microgrid, Optimization, Predictive modeling, Renewable energy, Support vector regression,
- Publication type
- Journal Article MeSH