Multi-microgrids
Dotaz
Zobrazit nápovědu
The rising energy demand, substantial transmission and distribution losses, and inconsistent power quality in remote regions highlight the urgent need for innovative solutions to ensure a stable electricity supply. Microgrids (MGs), integrated with distributed generation (DG), offer a promising approach to address these challenges by enabling localized power generation, improved grid flexibility, and enhanced reliability. This paper introduces the Improved Lyrebird Optimization Algorithm (ILOA) for optimal sectionalizing and scheduling of multi-microgrid systems, aiming to minimize generation costs and active power losses while ensuring system reliability. To enhance search efficiency, ILOA incorporates the Levy Flight technique for local search, which introduces adaptive step sizes with long-distance jumps, improving the exploration-exploitation balance. Unlike conventional local search strategies that rely on fixed step sizes, Levy Flight prevents premature convergence by allowing the algorithm to escape local optima and explore the solution space more effectively. Additionally, a chaotic sine map is integrated to enhance global search capability, ensuring better diversity and superior optimization performance compared to traditional algorithms. Simulation studies are conducted on a modified 33-bus distribution system segmented into three independent microgrids. The algorithm is evaluated under single-objective scenarios (cost and loss minimization) and a multi-objective optimization framework combining both objectives. In single-objective optimization, ILOA achieves a generation cost of $19,254.64/hr with 0.7118 kW of power loss, demonstrating marginal improvements over the standard Lyrebird Optimization Algorithm and significant gains over Genetic Algorithm (GA) and Jaya Algorithm (JAYA). In multi-objective optimization, ILOA surpasses competing methods by achieving a generation cost of $89,792.18/hr and 10.26 kW of power loss. The optimization results indicate that, for the IEEE-33 bus system without considering EIR, the proposed ILOA algorithm achieves savings of approximately 0.0014%, 0.0041%, and 0.657% in operation costs compared to LOA, JAYA, and GA, respectively, when MG-1, MG-2, and MG-3 are operational. The analysis of real power loss reduction demonstrates that, in the IEEE-33 bus system without considering EIR, the proposed ILOA algorithm effectively minimizes power loss by approximately 0.692%, 1.696%, and 1.962% in comparison to LOA, JAYA, and GA, respectively, under the operational conditions of MG-1, MG-2, and MG-3. Additionally, reliability constraints based on the Energy Index of Reliability (EIR) are effectively incorporated, further validating the robustness of the proposed approach. Considering EIR, the real power loss analysis for the IEEE-33 bus system highlights that the proposed ILOA algorithm achieves a reduction of approximately 1.319%, 2.069%, and 2.134% in comparison to LOA, JAYA, and GA, respectively, under the operational scenario where MG-1, MG-2, and MG-3 are active. The results confirm that ILOA is a highly efficient and reliable solution for distributed generation scheduling and multi-microgrid sectionalizing, showcasing its potential for real-world applications such as dynamic economic dispatch and demand response integration in smart grid systems.
Researchers are increasingly focusing on renewable energy due to its high reliability, energy independence, efficiency, and environmental benefits. This paper introduces a novel multi-objective framework for the short-term scheduling of microgrids (MGs), which addresses the conflicting objectives of minimizing operating expenses and reducing pollution emissions. The core contribution is the development of the Chaotic Self-Adaptive Sine Cosine Algorithm (CSASCA). This algorithm generates Pareto optimal solutions simultaneously, effectively balancing cost reduction and emission mitigation. The problem is formulated as a complex multi-objective optimization task with goals of cost reduction and environmental protection. To enhance decision-making within the algorithm, fuzzy logic is incorporated. The performance of CSASCA is evaluated across three scenarios: (1) PV and wind units operating at full power, (2) all units operating within specified limits with unrestricted utility power exchange, and (3) microgrid operation using only non-zero-emission energy sources. This third scenario highlights the algorithm's efficacy in a challenging context not covered in prior research. Simulation results from these scenarios are compared with traditional Sine Cosine Algorithm (SCA) and other recent optimization methods using three test examples. The innovation of CSASCA lies in its chaotic self-adaptive mechanisms, which significantly enhance optimization performance. The integration of these mechanisms results in superior solutions for operation cost, emissions, and execution time. Specifically, CSASCA achieves optimal values of 590.45 €ct for cost and 337.28 kg for emissions in the first scenario, 98.203 €ct for cost and 406.204 kg for emissions in the second scenario, and 95.38 €ct for cost and 982.173 kg for emissions in the third scenario. Overall, CSASCA outperforms traditional SCA by offering enhanced exploration, improved convergence, effective constraint handling, and reduced parameter sensitivity, making it a powerful tool for solving multi-objective optimization problems like microgrid scheduling.
- Klíčová slova
- Energy management, Micro-grid (MG), Multi-objective optimization, Photovoltaic (PV), Renewable energy sources (RESs), Sine cosine algorithm, Wind turbine (WT),
- Publikační typ
- časopisecké články MeSH
The use of plug-in hybrid electric vehicles (PHEVs) provides a way to address energy and environmental issues. Integrating a large number of PHEVs with advanced control and storage capabilities can enhance the flexibility of the distribution grid. This study proposes an innovative energy management strategy (EMS) using an Iterative map-based self-adaptive crystal structure algorithm (SaCryStAl) specifically designed for microgrids with renewable energy sources (RESs) and PHEVs. The goal is to optimize multi-objective scheduling for a microgrid with wind turbines, micro-turbines, fuel cells, solar photovoltaic systems, and batteries to balance power and store excess energy. The aim is to minimize microgrid operating costs while considering environmental impacts. The optimization problem is framed as a multi-objective problem with nonlinear constraints, using fuzzy logic to aid decision-making. In the first scenario, the microgrid is optimized with all RESs installed within predetermined boundaries, in addition to grid connection. In the second scenario, the microgrid operates with a wind turbine at rated power. The third case study involves integrating plug-in hybrid electric vehicles (PHEVs) into the microgrid in three charging modes: coordinated, smart, and uncoordinated, utilizing standard and rated RES power. The SaCryStAl algorithm showed superior performance in operation cost, emissions, and execution time compared to traditional CryStAl and other recent optimization methods. The proposed SaCryStAl algorithm achieved optimal solutions in the first scenario for cost and emissions at 177.29 €ct and 469.92 kg, respectively, within a reasonable time frame. In the second scenario, it yielded optimal cost and emissions values of 112.02 €ct and 196.15 kg, respectively. Lastly, in the third scenario, the SaCryStAl algorithm achieves optimal cost values of 319.9301 €ct, 160.9827 €ct and 128.2815 €ct for uncoordinated charging, coordinated charging and smart charging modes respectively. Optimization results reveal that the proposed SaCryStAl outperformed other evolutionary optimization algorithms, such as differential evolution, CryStAl, Grey Wolf Optimizer, particle swarm optimization, and genetic algorithm, as confirmed through test cases.
Microgrids (MGs) and energy communities have been widely implemented, leading to the participation of multiple stakeholders in distribution networks. Insufficient information infrastructure, particularly in rural distribution networks, is leading to a growing number of operational blind areas in distribution networks. An optimization challenge is addressed in multi-feeder microgrid systems to handle load sharing and voltage management by implementing a backward neural network (BNN) as a robust control approach. The control technique consists of a neural network that optimizes the control strategy to calculate the operating directions for each distributed generating point. Neural networks improve control during communication connectivity issues to ensure the computation of operational directions. Traditional control of DC microgrids is susceptible to communication link delays. The proposed BNN technique can be expanded to encompass the entire multi-feeder network for precise load distribution and voltage management. The BNN results are achieved through mathematical analysis of different load conditions and uncertain line characteristics in a radial network of a multi-feeder microgrid, demonstrating the effectiveness of the proposed approach. The proposed BNN technique is more effective than conventional control in accurately distributing the load and regulating the feeder voltage, especially during communication failure.
- Klíčová slova
- Backward NN, Communication latencies, Distributed control, Multi-level control, NN microgrid control, Renewable energy sources,
- Publikační typ
- časopisecké články MeSH
In this paper, a method of the energy management system (EMS) in multiple microgrids considering the constraints of power flow based on the three-objective optimization model is presented. The studied model specifications, the variable speed pumps in the water network as well and the storage tanks are optimally planned as flexible resources to reduce operating costs and pollution. The proposed method is implemented hierarchically through two primary and secondary control layers. At the primary control level, each microgrid performs local planning for its subscribers and energy generation resources, and their excess or unsupplied power is determined. Then, by sending this information to the central energy management system (CEMS) at the secondary level, it determines the amount of energy exchange, taking into account the limitations of power flow. Energy storage systems (ESS) are also considered to maintain the balance between power generation by renewable energy sources and consumption load. Also, the demand response (DR) program has been used to smooth the load curve and reduce operating costs. Finally, in this article, the multi-objective particle swarm optimization (MOPSO) is used to solve the proposed three-objective problem with three cost functions generation, pollution, and pump operation. Additionally, sensitivity analysis was conducted with uncertainties of 25 % and 50 % in network generation units, exploring their impact on objective functions. The proposed model has been tested on the microgrid of a 33-bus test distribution and 15-node test water system and has been investigated for different cases. The simulation results prove the effectiveness of the integration of water and power network planning in reducing the operating cost and emission of pollution in such a way that the proposed control scheme properly controls the performance of microgrids and the network in interactions with each other and has a high level of robustness, stable behavior under different conditions and high quality of the power supply. In such a way that improvements of 41.1 %, 52.2 %, and 20.4 % in the defined objective functions and the evaluation using DM, SM, and MID indices further confirms the algorithm's enhanced performance in optimizing the specified objective functions by 51 %, 11 %, and 5.22 %, respectively.
- Klíčová slova
- DR, MOPSO, Multiple microgrids, Operating cost and emissions, Optimization, Power-water energy management,
- Publikační typ
- časopisecké články MeSH
This study presents the Enhanced Cheetah Optimizer Algorithm (ECOA) designed to tackle the intricate real-world challenges of dynamic economic dispatch (DED). These complexities encompass demand-side management (DSM), integration of non-conventional energy sources, and the utilization of pumped-storage hydroelectric units. Acknowledging the variability of solar and wind energy sources and the existence of a pumped-storage hydroelectric system, this study integrates a solar-wind-thermal energy system. The DSM program not only enhances power grid security but also lowers operational costs. The research addresses the DED problem with and without DSM implementation to analyze its impact. Demonstrating effectiveness on two test systems, the suggested method's efficacy is showcased. The recommended method's simulation results have been compared to those obtained using Cheetah Optimizer Algorithm (COA) and Grey Wolf Optimizer. The optimization results indicate that, for both the 10-unit and 20-unit systems, the proposed ECOA algorithm achieves savings of 0.24% and 0.43%, respectively, in operation costs when Dynamic Economic Dispatch is conducted with Demand-Side Management (DSM). This underscores the advantageous capability of DSM in minimizing costs and enhancing the economic efficiency of the power systems. Our ECOA has greater adaptability and reliability, making it a promising solution for addressing multi-objective energy management difficulties within microgrids, particularly when demand response mechanisms are incorporated. Furthermore, the suggested ECOA has the ability to elucidate the multi-objective dynamic optimal power flow problem in IEEE standard test systems, particularly when electric vehicles and renewable energy sources are integrated.
- Publikační typ
- časopisecké články MeSH