Nejvíce citovaný článek - PubMed ID 8419328
Successful and accurate completion of the replication of damage-containing DNA requires mainly recombination and RAD18-dependent DNA damage tolerance pathways. RAD18 governs at least two distinct mechanisms: translesion synthesis (TLS) and template switching (TS)-dependent pathways. Whereas TS is mainly error-free, TLS can work in an error-prone manner and, as such, the regulation of these pathways requires tight control to prevent DNA errors and potentially oncogenic transformation and tumorigenesis. In humans, the PCNA-associated recombination inhibitor (PARI) protein has recently been shown to inhibit homologous recombination (HR) events. Here, we describe a biochemical mechanism in which PARI functions as an HR regulator after replication fork stalling and during double-strand break repair. In our reconstituted biochemical system, we show that PARI inhibits DNA repair synthesis during recombination events in a PCNA interaction-dependent way but independently of its UvrD-like helicase domain. In accordance, we demonstrate that PARI inhibits HR in vivo, and its knockdown suppresses the UV sensitivity of RAD18-depleted cells. Our data reveal a novel human regulatory mechanism that limits the extent of HR and represents a new potential target for anticancer therapy.
- MeSH
- aminokyselinové motivy MeSH
- DNA vazebné proteiny chemie metabolismus fyziologie MeSH
- DNA-polymerasa III antagonisté a inhibitory MeSH
- DNA biosyntéza MeSH
- HEK293 buňky MeSH
- lidé MeSH
- rekombinační oprava DNA * MeSH
- ubikvitinligasy fyziologie MeSH
- ultrafialové záření MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- DNA-polymerasa III MeSH
- DNA MeSH
- PARPBP protein, human MeSH Prohlížeč
- RAD18 protein, human MeSH Prohlížeč
- ubikvitinligasy MeSH
Srs2 plays many roles in DNA repair, the proper regulation and coordination of which is essential. Post-translational modification by small ubiquitin-like modifier (SUMO) is one such possible mechanism. Here, we investigate the role of SUMO in Srs2 regulation and show that the SUMO-interacting motif (SIM) of Srs2 is important for the interaction with several recombination factors. Lack of SIM, but not proliferating cell nuclear antigen (PCNA)-interacting motif (PIM), leads to increased cell death under circumstances requiring homologous recombination for DNA repair. Simultaneous mutation of SIM in asrs2ΔPIMstrain leads to a decrease in recombination, indicating a pro-recombination role of SUMO. Thus SIM has an ambivalent function in Srs2 regulation; it not only mediates interaction with SUMO-PCNA to promote the anti-recombination function but it also plays a PCNA-independent pro-recombination role, probably by stimulating the formation of recombination complexes. The fact that deletion of PIM suppresses the phenotypes of Srs2 lacking SIM suggests that proper balance between the anti-recombination PCNA-bound and pro-recombination pools of Srs2 is crucial. Notably, sumoylation of Srs2 itself specifically stimulates recombination at the rDNA locus.
- Klíčová slova
- DNA repair, homologous recombination, proliferating cell nuclear antigen (PCNA), protein-protein interaction, small ubiquitin-like modifier (SUMO),
- MeSH
- aminokyselinové motivy MeSH
- DNA fungální genetika metabolismus MeSH
- DNA-helikasy genetika metabolismus MeSH
- oprava DNA fyziologie MeSH
- proliferační antigen buněčného jádra genetika metabolismus MeSH
- protein SUMO-1 genetika metabolismus MeSH
- rekombinace genetická fyziologie MeSH
- ribozomální DNA genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- sumoylace fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA fungální MeSH
- DNA-helikasy MeSH
- proliferační antigen buněčného jádra MeSH
- protein SUMO-1 MeSH
- ribozomální DNA MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- SRS2 protein, S cerevisiae MeSH Prohlížeč
A variety of DNA lesions, secondary DNA structures or topological stress within the DNA template may lead to stalling of the replication fork. Recovery of such forks is essential for the maintenance of genomic stability. The structure-specific endonuclease Mus81-Mms4 has been implicated in processing DNA intermediates that arise from collapsed forks and homologous recombination. According to previous genetic studies, the Srs2 helicase may play a role in the repair of double-strand breaks and ssDNA gaps together with Mus81-Mms4. In this study, we show that the Srs2 and Mus81-Mms4 proteins physically interact in vitro and in vivo and we map the interaction domains within the Srs2 and Mus81 proteins. Further, we show that Srs2 plays a dual role in the stimulation of the Mus81-Mms4 nuclease activity on a variety of DNA substrates. First, Srs2 directly stimulates Mus81-Mms4 nuclease activity independent of its helicase activity. Second, Srs2 removes Rad51 from DNA to allow access of Mus81-Mms4 to cleave DNA. Concomitantly, Mus81-Mms4 inhibits the helicase activity of Srs2. Taken together, our data point to a coordinated role of Mus81-Mms4 and Srs2 in processing of recombination as well as replication intermediates.
- MeSH
- "flap" endonukleasy fyziologie MeSH
- DNA primery MeSH
- DNA vazebné proteiny fyziologie MeSH
- DNA-helikasy fyziologie MeSH
- endonukleasy fyziologie MeSH
- fluorescenční mikroskopie MeSH
- polymerázová řetězová reakce MeSH
- rekombinace genetická * MeSH
- Saccharomyces cerevisiae - proteiny fyziologie MeSH
- Saccharomyces cerevisiae metabolismus MeSH
- sekvence nukleotidů MeSH
- techniky dvojhybridového systému MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- "flap" endonukleasy MeSH
- DNA primery MeSH
- DNA vazebné proteiny MeSH
- DNA-helikasy MeSH
- endonukleasy MeSH
- MMS4 protein, S cerevisiae MeSH Prohlížeč
- MUS81 protein, S cerevisiae MeSH Prohlížeč
- Saccharomyces cerevisiae - proteiny MeSH
- SRS2 protein, S cerevisiae MeSH Prohlížeč
Completion of DNA replication needs to be ensured even when challenged with fork progression problems or DNA damage. PCNA and its modifications constitute a molecular switch to control distinct repair pathways. In yeast, SUMOylated PCNA (S-PCNA) recruits Srs2 to sites of replication where Srs2 can disrupt Rad51 filaments and prevent homologous recombination (HR). We report here an unexpected additional mechanism by which S-PCNA and Srs2 block the synthesis-dependent extension of a recombination intermediate, thus limiting its potentially hazardous resolution in association with a cross-over. This new Srs2 activity requires the SUMO interaction motif at its C-terminus, but neither its translocase activity nor its interaction with Rad51. Srs2 binding to S-PCNA dissociates Polδ and Polη from the repair synthesis machinery, thus revealing a novel regulatory mechanism controlling spontaneous genome rearrangements. Our results suggest that cycling cells use the Siz1-dependent SUMOylation of PCNA to limit the extension of repair synthesis during template switch or HR and attenuate reciprocal DNA strand exchanges to maintain genome stability.
- MeSH
- DNA-helikasy genetika metabolismus MeSH
- DNA-polymerasa II genetika metabolismus MeSH
- DNA-polymerasa III genetika metabolismus MeSH
- homologní rekombinace * MeSH
- mutace genetika MeSH
- nestabilita genomu MeSH
- oprava DNA genetika účinky záření MeSH
- poškození DNA genetika účinky záření MeSH
- proliferační antigen buněčného jádra genetika metabolismus MeSH
- protein SUMO-1 genetika metabolismus MeSH
- rekombinasa Rad51 genetika metabolismus MeSH
- replikace DNA genetika účinky záření MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- sumoylace MeSH
- ultrafialové záření škodlivé účinky MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA-helikasy MeSH
- DNA-polymerasa II MeSH
- DNA-polymerasa III MeSH
- proliferační antigen buněčného jádra MeSH
- protein SUMO-1 MeSH
- RAD51 protein, S cerevisiae MeSH Prohlížeč
- rekombinasa Rad51 MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- SRS2 protein, S cerevisiae MeSH Prohlížeč
The budding yeast Srs2 protein possesses 3' to 5' DNA helicase activity and channels untimely recombination to post-replication repair by removing Rad51 from ssDNA. However, it also promotes recombination via a synthesis-dependent strand-annealing pathway (SDSA). Furthermore, at the replication fork, Srs2 is required for fork progression and prevents the instability of trinucleotide repeats. To better understand the multiple roles of the Srs2 helicase during these processes, we analysed the ability of Srs2 to bind and unwind various DNA substrates that mimic structures present during DNA replication and recombination. While leading or lagging strands were efficiently unwound, the presence of ssDNA binding protein RPA presented an obstacle for Srs2 translocation. We also tested the preferred directionality of unwinding of various substrates and studied the effect of Rad51 and Mre11 proteins on Srs2 helicase activity. These biochemical results help us understand the possible role of Srs2 in the processing of stalled or blocked replication forks as a part of post-replication repair as well as homologous recombination (HR).
- MeSH
- delece genu MeSH
- DNA-helikasy genetika metabolismus MeSH
- endodeoxyribonukleasy metabolismus MeSH
- exodeoxyribonukleasy metabolismus MeSH
- homologní rekombinace * MeSH
- jednovláknová DNA chemie metabolismus MeSH
- křížová struktura DNA chemie metabolismus MeSH
- rekombinasa Rad51 metabolismus MeSH
- replikace DNA * MeSH
- replikační protein A metabolismus MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA-helikasy MeSH
- endodeoxyribonukleasy MeSH
- exodeoxyribonukleasy MeSH
- jednovláknová DNA MeSH
- křížová struktura DNA MeSH
- MRE11 protein, S cerevisiae MeSH Prohlížeč
- RAD51 protein, S cerevisiae MeSH Prohlížeč
- rekombinasa Rad51 MeSH
- replikační protein A MeSH
- RFA1 protein, S cerevisiae MeSH Prohlížeč
- Saccharomyces cerevisiae - proteiny MeSH
- SRS2 protein, S cerevisiae MeSH Prohlížeč
Homologous recombination plays a key role in the maintenance of genome integrity, especially during DNA replication and the repair of double-stranded DNA breaks (DSBs). Just a single un-repaired break can lead to aneuploidy, genetic aberrations or cell death. DSBs are caused by a vast number of both endogenous and exogenous agents including genotoxic chemicals or ionizing radiation, as well as through replication of a damaged template DNA or the replication fork collapse. It is essential for cell survival to recognise and process DSBs as well as other toxic intermediates and launch most appropriate repair mechanism. Many helicases have been implicated to play role in these processes, however their detail roles, specificities and co-operativity in the complex protein-protein interaction networks remain unclear. In this review we summarize the current knowledge about Saccharomyces cerevisiae helicase Srs2 and its effect on multiple DNA metabolic processes that generally affect genome stability. It would appear that Srs2 functions as an "Odd-Job Man" in these processes to make sure that the jobs proceed when and where they are needed.
- MeSH
- DNA fungální metabolismus MeSH
- DNA-helikasy chemie metabolismus MeSH
- lidé MeSH
- nestabilita genomu MeSH
- oprava DNA * MeSH
- replikace DNA MeSH
- Saccharomyces cerevisiae - proteiny chemie metabolismus MeSH
- Saccharomyces cerevisiae enzymologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- DNA fungální MeSH
- DNA-helikasy MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- SRS2 protein, S cerevisiae MeSH Prohlížeč