Nejvíce citovaný článek - PubMed ID 8630071
A modular approach to HIV-1 proteinase inhibitor design
Viral proteases are indispensable for successful virion maturation, thus making them a prominent drug target. Their enzyme activity is tightly spatiotemporally regulated by expression in the precursor form with little or no activity, followed by activation via autoprocessing. These cleavage events are frequently triggered upon transportation to a specific compartment inside the host cell. Typically, precursor oligomerization or the presence of a co-factor is needed for activation. A detailed understanding of these mechanisms will allow ligands with non-canonical mechanisms of action to be designed, which would specifically modulate the initial irreversible steps of viral protease autoactivation. Binding sites exclusive to the precursor, including binding sites beyond the protease domain, can be exploited. Both inhibition and up-regulation of the proteolytic activity of viral proteases can be detrimental for the virus. All these possibilities are discussed using examples of medically relevant viruses including herpesviruses, adenoviruses, retroviruses, picornaviruses, caliciviruses, togaviruses, flaviviruses, and coronaviruses.
- Klíčová slova
- Human Immunodeficiency Virus (HIV), Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), activation, adenoviruses, autoprocessing, flaviviruses, herpesviruses, precursor, protease,
- MeSH
- antivirové látky farmakologie MeSH
- Flavivirus účinky léků metabolismus MeSH
- Herpesviridae účinky léků metabolismus MeSH
- HIV-1 účinky léků MeSH
- inhibitory virových proteáz farmakologie MeSH
- lidé MeSH
- lidské adenoviry účinky léků metabolismus MeSH
- SARS-CoV-2 účinky léků metabolismus MeSH
- virové nemoci farmakoterapie MeSH
- virové proteasy biosyntéza metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- antivirové látky MeSH
- inhibitory virových proteáz MeSH
- virové proteasy MeSH
High-pressure methods have become an interesting tool of investigation of structural stability of proteins. They are used to study protein unfolding, but dissociation of oligomeric proteins can be addressed this way, too. HIV-1 protease, although an interesting object of biophysical experiments, has not been studied at high pressure yet. In this study HIV-1 protease is investigated by high pressure (up to 600 MPa) fluorescence spectroscopy of either the inherent tryptophan residues or external 8-anilino-1-naphtalenesulfonic acid at 25°C. A fast concentration-dependent structural transition is detected that corresponds to the dimer-monomer equilibrium. This transition is followed by a slow concentration independent transition that can be assigned to the monomer unfolding. In the presence of a tight-binding inhibitor none of these transitions are observed, which confirms the stabilizing effect of inhibitor. High-pressure enzyme kinetics (up to 350 MPa) also reveals the stabilizing effect of substrate. Unfolding of the protease can thus proceed only from the monomeric state after dimer dissociation and is unfavourable at atmospheric pressure. Dimer-destabilizing effect of high pressure is caused by negative volume change of dimer dissociation of -32.5 mL/mol. It helps us to determine the atmospheric pressure dimerization constant of 0.92 μM. High-pressure methods thus enable the investigation of structural phenomena that are difficult or impossible to measure at atmospheric pressure.
- MeSH
- anilin-naftalen sulfonáty metabolismus MeSH
- atmosférický tlak MeSH
- darunavir metabolismus MeSH
- dimerizace MeSH
- fluorescenční spektrometrie MeSH
- HIV-proteasa chemie metabolismus MeSH
- inhibitory HIV-proteasy metabolismus MeSH
- kinetika MeSH
- konformace proteinů MeSH
- lidé MeSH
- molekulární modely MeSH
- multimerizace proteinu MeSH
- sbalování proteinů * MeSH
- stabilita proteinů účinky léků MeSH
- termodynamika MeSH
- tryptofan metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1-anilino-8-naphthalenesulfonate MeSH Prohlížeč
- anilin-naftalen sulfonáty MeSH
- darunavir MeSH
- HIV-proteasa MeSH
- inhibitory HIV-proteasy MeSH
- p16 protease, Human immunodeficiency virus 1 MeSH Prohlížeč
- tryptofan MeSH
The design, development and clinical success of HIV protease inhibitors represent one of the most remarkable achievements of molecular medicine. This review describes all nine currently available FDA-approved protease inhibitors, discusses their pharmacokinetic properties, off-target activities, side-effects, and resistance profiles. The compounds in the various stages of clinical development are also introduced, as well as alternative approaches, aiming at other functional domains of HIV PR. The potential of these novel compounds to open new way to the rational drug design of human viruses is critically assessed.
- Klíčová slova
- HAART, HIV protease, alternative inhibitors, pharmacokinetic boosting, protease dimerization, protease inhibitors, resistance development,
- Publikační typ
- časopisecké články MeSH
All retroviral proteases belong to the family of aspartic proteases. They are active as homodimers, each unit contributing one catalytic aspartate to the active site dyad. An important feature of all aspartic proteases is a conserved complex scaffold of hydrogen bonds supporting the active site, called the "fireman's grip," which involves the hydroxyl groups of two threonine (serine) residues in the active site Asp-Thr(Ser)-Gly triplets. It was shown previously that the fireman's grip is indispensable for the dimer stability of HIV protease. The retroviral proteases harboring Ser in their active site triplet are less active and, under natural conditions, are expressed in higher enzyme/substrate ratio than those having Asp-Thr-Gly triplet. To analyze whether this observation can be attributed to the different influence of Thr or Ser on dimerization, we prepared two pairs of the wild-type and mutant proteases from HIV and myeloblastosis-associated virus harboring either Ser or Thr in their Asp-Thr(Ser)-Gly triplet. The equilibrium dimerization constants differed by an order of magnitude within the relevant pairs. The proteases with Thr in their active site triplets were found to be approximately 10 times more thermodynamically stable. The dimer association contributes to this difference more than does the dissociation. We propose that the fireman's grip might be important in the initial phases of dimer formation to help properly orientate the two subunits of a retroviral protease. The methyl group of threonine might contribute significantly to fixing such an intermediate conformation.
- MeSH
- algoritmy MeSH
- aspartátové endopeptidasy chemie genetika metabolismus MeSH
- bodová mutace genetika MeSH
- dimerizace MeSH
- fluorescenční barviva metabolismus MeSH
- HIV-proteasa chemie genetika metabolismus MeSH
- kinetika MeSH
- lidé MeSH
- molekulární modely MeSH
- rekombinantní proteiny chemie genetika metabolismus MeSH
- Retroviridae - proteiny chemie genetika metabolismus MeSH
- serin chemie genetika MeSH
- stabilita enzymů genetika MeSH
- substrátová specifita MeSH
- threonin chemie genetika MeSH
- vazebná místa genetika MeSH
- vodíková vazba MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aspartátové endopeptidasy MeSH
- fluorescenční barviva MeSH
- HIV-proteasa MeSH
- protease p15 MeSH Prohlížeč
- rekombinantní proteiny MeSH
- Retroviridae - proteiny MeSH
- serin MeSH
- threonin MeSH