Nejvíce citovaný článek - PubMed ID 9025284
Haloalkane dehalogenases are enzymes that catalyze the cleavage of carbon-halogen bonds in halogenated compounds. They serve as model enzymes for studying structure-function relationships of >100.000 members of the α/β-hydrolase superfamily. Detailed kinetic analysis of their reaction is crucial for understanding the reaction mechanism and developing novel concepts in protein engineering. Fluorescent substrates, which change their fluorescence properties during a catalytic cycle, may serve as attractive molecular probes for studying the mechanism of enzyme catalysis. In this work, we present the development of the first fluorescent substrates for this enzyme family based on coumarin and BODIPY chromophores. Steady-state and pre-steady-state kinetics with two of the most active haloalkane dehalogenases, DmmA and LinB, revealed that both fluorescent substrates provided specificity constant two orders of magnitude higher (0.14-12.6 μM-1 s-1) than previously reported representative substrates for the haloalkane dehalogenase family (0.00005-0.014 μM-1 s-1). Stopped-flow fluorescence/FRET analysis enabled for the first time monitoring of all individual reaction steps within a single experiment: (i) substrate binding, (ii-iii) two subsequent chemical steps and (iv) product release. The newly introduced fluorescent molecules are potent probes for fast steady-state kinetic profiling. In combination with rapid mixing techniques, they provide highly valuable information about individual kinetic steps and mechanism of haloalkane dehalogenases. Additionally, these molecules offer high specificity and efficiency for protein labeling and can serve as probes for studying protein hydration and dynamics as well as potential markers for cell imaging.
- Klíčová slova
- Enzyme kinetics, Fluorescent substrate, Haloalkane dehalogenase, Mechanism, Protein labeling,
- Publikační typ
- časopisecké články MeSH
Halide assays are important for the study of enzymatic dehalogenation, a topic of great industrial and scientific importance. Here we describe the development of a very sensitive halide assay that can detect less than a picomole of bromide ions, making it very useful for quantifying enzymatic dehalogenation products. Halides are oxidised under mild conditions using the vanadium-dependent chloroperoxidase from Curvularia inaequalis, forming hypohalous acids that are detected using aminophenyl fluorescein. The assay is up to three orders of magnitude more sensitive than currently available alternatives, with detection limits of 20 nM for bromide and 1 μM for chloride and iodide. We demonstrate that the assay can be used to determine specific activities of dehalogenases and validate this by comparison to a well-established GC-MS method. This new assay will facilitate the identification and characterisation of novel dehalogenases and may also be of interest to those studying other halide-producing enzymes.
- Klíčová slova
- dehalogenase, fluorescence, halides, haloalkane, haloperoxidase,
- Publikační typ
- časopisecké články MeSH
Rational enzyme design presents a major challenge that has not been overcome by computational approaches. One of the key challenges is the difficulty in assessing the magnitude of the maximum possible catalytic activity. In an attempt to overcome this challenge, we introduce a strategy that takes an active enzyme (assuming that its activity is close to the maximum possible activity), design mutations that reduce the catalytic activity, and then try to restore that catalysis by mutating other residues. Here we take as a test case the enzyme haloalkane dehalogenase (DhlA), with a 1,2-dichloroethane substrate. We start by demonstrating our ability to reproduce the results of single mutations. Next, we design mutations that reduce the enzyme activity and finally design double mutations that are aimed at restoring the activity. Using the computational predictions as a guide, we conduct an experimental study that confirms our prediction in one case and leads to inconclusive results in another case with 1,2-dichloroethane as substrate. Interestingly, one of our predicted double mutants catalyzes dehalogenation of 1,2-dibromoethane more efficiently than the wild-type enzyme.
- Klíčová slova
- EVB, dehalogenase, enzyme design, nucleophilic substitution, transient kinetics,
- MeSH
- chemické modely * MeSH
- ethylendichloridy chemie MeSH
- hydrolasy chemie MeSH
- katalytická doména MeSH
- molekulární modely * MeSH
- počítačová simulace * MeSH
- substrátová specifita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- ethylendichloridy MeSH
- ethylene dichloride MeSH Prohlížeč
- haloalkane dehalogenase MeSH Prohlížeč
- hydrolasy MeSH
Haloalkane dehalogenases (HLDs) have recently been discovered in a number of bacteria, including symbionts and pathogens of both plants and humans. However, the biological roles of HLDs in these organisms are unclear. The development of efficient HLD inhibitors serving as molecular probes to explore their function would represent an important step toward a better understanding of these interesting enzymes. Here we report the identification of inhibitors for this enzyme family using two different approaches. The first builds on the structures of the enzymes' known substrates and led to the discovery of less potent nonspecific HLD inhibitors. The second approach involved the virtual screening of 150,000 potential inhibitors against the crystal structure of an HLD from the human pathogen Mycobacterium tuberculosis H37Rv. The best inhibitor exhibited high specificity for the target structure, with an inhibition constant of 3 μM and a molecular architecture that clearly differs from those of all known HLD substrates. The new inhibitors will be used to study the natural functions of HLDs in bacteria, to probe their mechanisms, and to achieve their stabilization.
- MeSH
- hydrolasy antagonisté a inhibitory chemie MeSH
- inhibitory enzymů chemie izolace a purifikace metabolismus MeSH
- konformace proteinů MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- Mycobacterium tuberculosis enzymologie MeSH
- simulace molekulární dynamiky MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- haloalkane dehalogenase MeSH Prohlížeč
- hydrolasy MeSH
- inhibitory enzymů MeSH
We emphasize the importance of dynamics and hydration for enzymatic catalysis and protein design by transplanting the active site from a haloalkane dehalogenase with high enantioselectivity to nonselective dehalogenase. Protein crystallography confirms that the active site geometry of the redesigned dehalogenase matches that of the target, but its enantioselectivity remains low. Time-dependent fluorescence shifts and computer simulations revealed that dynamics and hydration at the tunnel mouth differ substantially between the redesigned and target dehalogenase.
- MeSH
- bromované uhlovodíky chemie MeSH
- fluorescenční spektrometrie MeSH
- hydrolasy chemie genetika MeSH
- katalytická doména MeSH
- katalýza MeSH
- konformace proteinů MeSH
- krystalografie rentgenová MeSH
- molekulární sekvence - údaje MeSH
- mutageneze cílená MeSH
- proteinové inženýrství * MeSH
- sekvence aminokyselin MeSH
- simulace molekulární dynamiky * MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- stereoizomerie MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bromované uhlovodíky MeSH
- haloalkane dehalogenase MeSH Prohlížeč
- hydrolasy MeSH
- voda MeSH
The effect of non-denaturing concentrations of three different organic solvents, formamide, acetone and isopropanol, on the structure of haloalkane dehalogenases DhaA, LinB, and DbjA at the protein-solvent interface was studied using molecular dynamics simulations. Analysis of B-factors revealed that the presence of a given organic solvent mainly affects the dynamical behavior of the specificity-determining cap domain, with the exception of DbjA in acetone. Orientation of organic solvent molecules on the protein surface during the simulations was clearly dependent on their interaction with hydrophobic or hydrophilic surface patches, and the simulations suggest that the behavior of studied organic solvents in the vicinity of hyrophobic patches on the surface is similar to the air/water interface. DbjA was the only dimeric enzyme among studied haloalkane dehalogenases and provided an opportunity to explore effects of organic solvents on the quaternary structure. Penetration and trapping of organic solvents in the network of interactions between both monomers depends on the physico-chemical properties of the organic solvents. Consequently, both monomers of this enzyme oscillate differently in different organic solvents. With the exception of LinB in acetone, the structures of studied enzymes were stabilized in water-miscible organic solvents.
- MeSH
- 2-propanol chemie farmakologie MeSH
- aceton chemie farmakologie MeSH
- formamidy chemie farmakologie MeSH
- hydrofobní a hydrofilní interakce MeSH
- hydrolasy chemie MeSH
- krystalografie rentgenová MeSH
- kvarterní struktura proteinů účinky léků MeSH
- molekulární modely MeSH
- rozpouštědla chemie MeSH
- simulace molekulární dynamiky MeSH
- terciární struktura proteinů účinky léků MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 2-propanol MeSH
- aceton MeSH
- formamide MeSH Prohlížeč
- formamidy MeSH
- haloalkane dehalogenase MeSH Prohlížeč
- hydrolasy MeSH
- rozpouštědla MeSH
- voda MeSH
Tunnels and channels facilitate the transport of small molecules, ions and water solvent in a large variety of proteins. Characteristics of individual transport pathways, including their geometry, physico-chemical properties and dynamics are instrumental for understanding of structure-function relationships of these proteins, for the design of new inhibitors and construction of improved biocatalysts. CAVER is a software tool widely used for the identification and characterization of transport pathways in static macromolecular structures. Herein we present a new version of CAVER enabling automatic analysis of tunnels and channels in large ensembles of protein conformations. CAVER 3.0 implements new algorithms for the calculation and clustering of pathways. A trajectory from a molecular dynamics simulation serves as the typical input, while detailed characteristics and summary statistics of the time evolution of individual pathways are provided in the outputs. To illustrate the capabilities of CAVER 3.0, the tool was applied for the analysis of molecular dynamics simulation of the microbial enzyme haloalkane dehalogenase DhaA. CAVER 3.0 safely identified and reliably estimated the importance of all previously published DhaA tunnels, including the tunnels closed in DhaA crystal structures. Obtained results clearly demonstrate that analysis of molecular dynamics simulation is essential for the estimation of pathway characteristics and elucidation of the structural basis of the tunnel gating. CAVER 3.0 paves the way for the study of important biochemical phenomena in the area of molecular transport, molecular recognition and enzymatic catalysis. The software is freely available as a multiplatform command-line application at http://www.caver.cz.
- MeSH
- algoritmy * MeSH
- hydrolasy chemie metabolismus MeSH
- konformace proteinů * MeSH
- krystalografie MeSH
- proteiny chemie metabolismus MeSH
- shluková analýza MeSH
- simulace molekulární dynamiky MeSH
- software * MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- haloalkane dehalogenase MeSH Prohlížeč
- hydrolasy MeSH
- proteiny MeSH
A haloalkane dehalogenase, DpcA, from Psychrobacter cryohalolentis K5, representing a novel psychrophilic member of the haloalkane dehalogenase family, was identified and biochemically characterized. DpcA exhibited a unique temperature profile with exceptionally high activities at low temperatures. The psychrophilic properties of DpcA make this enzyme promising for various environmental applications.
- MeSH
- bakteriální proteiny chemie genetika metabolismus MeSH
- fyziologická adaptace * MeSH
- hydrolasy chemie genetika metabolismus MeSH
- kinetika MeSH
- koncentrace vodíkových iontů MeSH
- nízká teplota * MeSH
- Psychrobacter enzymologie genetika růst a vývoj fyziologie MeSH
- substrátová specifita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- haloalkane dehalogenase MeSH Prohlížeč
- hydrolasy MeSH
Haloalkane dehalogenases hydrolyze carbon-halogen bonds in a wide range of halogenated aliphatic compounds. The potential use of haloalkane dehalogenases in bioremediation applications has stimulated intensive investigation of these enzymes and their engineering. The mutant DhaA31 was constructed to degrade the anthropogenic compound 1,2,3-trichloropropane (TCP) using a new strategy. This strategy enhances activity towards TCP by decreasing the accessibility of the active site to water molecules, thereby promoting formation of the activated complex. The structure of DhaA31 will help in understanding the structure-function relationships involved in the improved dehalogenation of TCP. The mutant protein DhaA31 was crystallized by the sitting-drop vapour-diffusion technique and crystals of DhaA31 in complex with TCP were obtained using soaking experiments. Both crystals belonged to the triclinic space group P1. Diffraction data were collected to high resolution: to 1.31 Å for DhaA31 and to 1.26 Å for DhaA31 complexed with TCP.
- MeSH
- bakteriální proteiny chemie genetika metabolismus MeSH
- difrakce rentgenového záření MeSH
- hydrolasy chemie genetika metabolismus MeSH
- krystalizace MeSH
- molekulární sekvence - údaje MeSH
- propan analogy a deriváty chemie metabolismus MeSH
- Rhodococcus enzymologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1,2,3-trichloropropane MeSH Prohlížeč
- bakteriální proteiny MeSH
- haloalkane dehalogenase MeSH Prohlížeč
- hydrolasy MeSH
- propan MeSH
Engineering enzymes to degrade anthropogenic compounds efficiently is challenging. We obtained Rhodococcus rhodochrous haloalkane dehalogenase mutants with up to 32-fold higher activity than wild type toward the toxic, recalcitrant anthropogenic compound 1,2,3-trichloropropane (TCP) using a new strategy. We identified key residues in access tunnels connecting the buried active site with bulk solvent by rational design and randomized them by directed evolution. The most active mutant has large aromatic residues at two out of three randomized positions and two positions modified by site-directed mutagenesis. These changes apparently enhance activity with TCP by decreasing accessibility of the active site for water molecules, thereby promoting activated complex formation. Kinetic analyses confirmed that the mutations improved carbon-halogen bond cleavage and shifted the rate-limiting step to the release of products. Engineering access tunnels by combining computer-assisted protein design with directed evolution may be a valuable strategy for refining catalytic properties of enzymes with buried active sites.
- MeSH
- biodegradace MeSH
- cirkulární dichroismus MeSH
- hydrolasy chemie genetika metabolismus MeSH
- látky znečišťující životní prostředí chemie MeSH
- molekulární modely MeSH
- molekulární sekvence - údaje MeSH
- mutageneze cílená MeSH
- počítačová simulace MeSH
- propan analogy a deriváty chemie MeSH
- proteinové inženýrství * MeSH
- Rhodococcus enzymologie genetika růst a vývoj MeSH
- řízená evoluce molekul MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1,2,3-trichloropropane MeSH Prohlížeč
- haloalkane dehalogenase MeSH Prohlížeč
- hydrolasy MeSH
- látky znečišťující životní prostředí MeSH
- propan MeSH