Nejvíce citovaný článek - PubMed ID 9224827
Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors
Muscarinic acetylcholine receptors are metabotropic G-protein coupled receptors. Muscarinic receptors in the cardiovascular system play a central role in its regulation. Particularly M2 receptors slow down the heart rate by reducing the impulse conductivity through the atrioventricular node. In general, activation of muscarinic receptors has sedative effects on the cardiovascular system, including vasodilation, negative chronotropic and inotropic effects on the heart, and cardioprotective effects, including antifibrillatory effects. First, we review the signaling of individual subtypes of muscarinic receptors and their involvement in the physiology and pathology of the cardiovascular system. Then we review age and disease-related changes in signaling via muscarinic receptors in the cardiovascular system. Finally, we review molecular mechanisms involved in cardioprotection mediated by muscarinic receptors leading to negative chronotropic and inotropic and antifibrillatory effects on heart and vasodilation, like activation of acetylcholine-gated inward-rectifier K+-currents and endothelium-dependent and -independent vasodilation. We relate this knowledge with well-established cardioprotective treatments by vagal stimulation and muscarinic agonists. It is well known that estrogen exerts cardioprotective effects against atherosclerosis and ischemia-reperfusion injury. Recently, some sex hormones and neurosteroids have been shown to allosterically modulate muscarinic receptors. Thus, we outline possible treatment by steroid-based positive allosteric modulators of acetylcholine as a novel pharmacotherapeutic tactic. Keywords: Muscarinic receptors, Muscarinic agonists, Allosteric modulation, Cardiovascular system, Cardioprotection, Steroids.
- MeSH
- agonisté muskarinových receptorů farmakologie MeSH
- kardiotonika farmakologie terapeutické užití MeSH
- lidé MeSH
- receptory muskarinové * metabolismus MeSH
- vazodilatace fyziologie účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- agonisté muskarinových receptorů MeSH
- kardiotonika MeSH
- receptory muskarinové * MeSH
Muscarinic receptors (mAChRs) are typical members of the G protein-coupled receptor (GPCR) family and exist in five subtypes from M1 to M5. Muscarinic receptor subtypes do not sufficiently differ in affinity to orthosteric antagonists or agonists; therefore, the analysis of receptor subtypes is complicated, and misinterpretations can occur. Usually, when researchers mainly specialized in CNS and peripheral functions aim to study mAChR involvement in behavior, learning, spinal locomotor networks, biological rhythms, cardiovascular physiology, bronchoconstriction, gastrointestinal tract functions, schizophrenia, and Parkinson's disease, they use orthosteric ligands and they do not use allosteric ligands. Moreover, they usually rely on manufacturers' claims that could be misleading. This review aimed to call the attention of researchers not deeply focused on mAChR pharmacology to this fact. Importantly, limited selective binding is not only a property of mAChRs but is a general attribute of most neurotransmitter receptors. In this review, we want to give an overview of the most common off-targets for established mAChR ligands. In this context, an important point is a mention the tremendous knowledge gap on off-targets for novel compounds compared to very well-established ligands. Therefore, we will summarize reported affinities and give an outline of strategies to investigate the subtype's function, thereby avoiding ambiguous results. Despite that, the multitargeting nature of drugs acting also on mAChR could be an advantage when treating such diseases as schizophrenia. Antipsychotics are a perfect example of a multitargeting advantage in treatment. A promising strategy is the use of allosteric ligands, although some of these ligands have also been shown to exhibit limited selectivity. Another new direction in the development of muscarinic selective ligands is functionally selective and biased agonists. The possible selective ligands, usually allosteric, will also be listed. To overcome the limited selectivity of orthosteric ligands, the recommended process is to carefully examine the presence of respective subtypes in specific tissues via knockout studies, carefully apply "specific" agonists/antagonists at appropriate concentrations and then calculate the probability of a specific subtype involvement in specific functions. This could help interested researchers aiming to study the central nervous system functions mediated by the muscarinic receptor.
- Klíčová slova
- allosteric, multitarget, muscarinic agonist, muscarinic antagonist, muscarinic receptors, orthosteric,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Proper determination of agonist efficacy is indispensable in the evaluation of agonist selectivity and bias to activation of specific signalling pathways. The operational model (OM) of pharmacological agonism is a useful means for achieving this goal. Allosteric ligands bind to receptors at sites that are distinct from those of endogenous agonists that interact with the orthosteric domain on the receptor. An allosteric modulator and an orthosteric agonist bind simultaneously to the receptor to form a ternary complex, where the allosteric modulator affects the binding affinity and operational efficacy of the agonist. Allosteric modulators are an intensively studied group of receptor ligands because of their selectivity and preservation of physiological space-time pattern of the signals they modulate. We analysed the operational model of allosterically-modulated agonism (OMAM) including modulation by allosteric agonists. Similar to OM, several parameters of OMAM are inter-dependent. We derived equations describing mutual relationships among parameters of the functional response and OMAM. We present a workflow for the robust fitting of OMAM to experimental data using derived equations.
- MeSH
- alosterická regulace MeSH
- kinetika MeSH
- lidé MeSH
- ligandy MeSH
- receptory spřažené s G-proteiny agonisté metabolismus MeSH
- synergismus léků * MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ligandy MeSH
- receptory spřažené s G-proteiny MeSH
Allosteric modulators are ligands that bind to a site on the receptor that is spatially separated from the orthosteric binding site for the endogenous neurotransmitter. Allosteric modulators modulate the binding affinity, potency, and efficacy of orthosteric ligands. Muscarinic acetylcholine receptors are prototypical allosterically-modulated G-protein-coupled receptors. They are a potential therapeutic target for the treatment of psychiatric, neurologic, and internal diseases like schizophrenia, Alzheimer's disease, Huntington disease, type 2 diabetes, or chronic pulmonary obstruction. Here, we reviewed the progress made during the last decade in our understanding of their mechanisms of binding, allosteric modulation, and in vivo actions in order to understand the translational impact of studying this important class of pharmacological agents. We overviewed newly developed allosteric modulators of muscarinic receptors as well as new spin-off ideas like bitopic ligands combining allosteric and orthosteric moieties and photo-switchable ligands based on bitopic agents.
- Klíčová slova
- acetylcholine, allosteric modulation, muscarinic receptors,
- MeSH
- agonisté muskarinových receptorů metabolismus MeSH
- alosterická regulace fyziologie MeSH
- antagonisté muskarinových receptorů metabolismus MeSH
- lidé MeSH
- ligandy MeSH
- receptory muskarinové metabolismus fyziologie MeSH
- receptory spřažené s G-proteiny MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- agonisté muskarinových receptorů MeSH
- antagonisté muskarinových receptorů MeSH
- ligandy MeSH
- receptory muskarinové MeSH
- receptory spřažené s G-proteiny MeSH
Allosteric ligands bind to receptors at sites that are distinct from those endogenous agonists and orthosteric pharmacological agents interact with. Both an allosteric and orthosteric ligand bind simultaneously to the receptor to form a ternary complex, where each ligand influences binding affinity of the other to the receptor, either positively or negatively. Allosteric modulators are an intensively studied group of receptor ligands because of their potentially greater selectivity over orthosteric ligands, with the possibility of fine tuning of the effects of endogenous neurotransmitters and hormones. The affinity of an unlabelled allosteric ligand is commonly estimated by measuring its effects on binding of a radio-labelled orthosteric tracer. This scenario is complicated by many folds when one studies the kinetics of interactions of two allosteric agents, added simultaneously, on binding of an orthosteric tracer. In this paper, we provide, for the first time, theoretical basis for analysis of such complex interactions. We have expanded our analysis to include the possibility of having two allosteric modulators interact with the same or different sites on the receptor. An added value of our analysis is to provide a tool to distinguish between the two situations. Finally, we also modelled binding of two molecules of one allosteric modulator to one receptor.
- MeSH
- alosterická regulace MeSH
- alosterické místo MeSH
- chemické modely * MeSH
- kinetika MeSH
- ligandy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ligandy MeSH
BACKGROUND AND PURPOSE: Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5'-γ-thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M₂ muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. EXPERIMENTAL APPROACH: Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [³⁵S]GTPγS and [³H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M₂ muscarinic acetylcholine receptor. KEY RESULTS: Agonists displayed biphasic competition curves with the antagonist [³H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [³H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from G(i/o) G-proteins but only its dissociation from G(s/olf) G-proteins. CONCLUSIONS AND IMPLICATIONS: These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of G(i/o) versus G(s/olf) G-proteins that are not identified by conventional GTPγS binding.
- MeSH
- agonisté muskarinových receptorů metabolismus MeSH
- alosterická regulace MeSH
- antagonisté muskarinových receptorů metabolismus MeSH
- CHO buňky MeSH
- Cricetulus MeSH
- guanosin 5'-O-(3-thiotrifosfát) metabolismus MeSH
- guanosindifosfát metabolismus MeSH
- kinetika MeSH
- křečci praví MeSH
- lidé MeSH
- N-methylskopolamin metabolismus MeSH
- proteiny vázající GTP klasifikace metabolismus MeSH
- radioligandová zkouška MeSH
- receptor muskarinový M2 genetika metabolismus MeSH
- rekombinantní proteiny genetika metabolismus MeSH
- transfekce MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- agonisté muskarinových receptorů MeSH
- antagonisté muskarinových receptorů MeSH
- guanosin 5'-O-(3-thiotrifosfát) MeSH
- guanosindifosfát MeSH
- N-methylskopolamin MeSH
- proteiny vázající GTP MeSH
- receptor muskarinový M2 MeSH
- rekombinantní proteiny MeSH
An allosteric modulator is a ligand that binds to an allosteric site on the receptor and changes receptor conformation to produce increase (positive cooperativity) or decrease (negative cooperativity) in the binding or action of an orthosteric agonist (e.g., acetylcholine). Since the identification of gallamine as the first allosteric modulator of muscarinic receptors in 1976, this unique mode of receptor modulation has been intensively studied by many groups. This review summarizes over 30 years of research on the molecular mechanisms of allosteric interactions of drugs with the receptor and for new allosteric modulators of muscarinic receptors with potential therapeutic use. Identification of positive modulators of acetylcholine binding and function that enhance neurotransmission and the discovery of highly selective allosteric modulators are mile-stones on the way to novel therapeutic agents for the treatment of schizophrenia, Alzheimer's disease and other disorders involving impaired cognitive function.
- Klíčová slova
- Alzheimer’s disease, allosteric modulation, muscarinic acetylcholine receptors, schizophrenia,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Many neuromuscular blockers act as negative allosteric modulators of muscarinic acetylcholine receptors by decreasing affinity and potency of acetylcholine. The neuromuscular blocker rapacuronium has been shown to have facilitatory effects at muscarinic receptors leading to bronchospasm. We examined the influence of rapacuronium on acetylcholine (ACh) binding to and activation of individual subtypes of muscarinic receptors expressed in Chinese hamster ovary cells to determine its receptor selectivity. RESULTS: At equilibrium rapacuronium bound to all subtypes of muscarinic receptors with micromolar affinity (2.7-17 microM) and displayed negative cooperativity with both high- and low-affinity ACh binding states. Rapacuronium accelerated [3H]ACh association with and dissociation from odd-numbered receptor subtypes. With respect to [35S]GTPgammaS binding rapacuronium alone behaved as an inverse agonist at all subtypes. Rapacuronium concentration-dependently decreased the potency of ACh-induced [35S]GTPgammaS binding at M2 and M4 receptors. In contrast, 0.1 microM rapacuronium significantly increased ACh potency at M1, M3, and M5 receptors. Kinetic measurements at M3 receptors showed acceleration of the rate of ACh-induced [35S]GTPgammaS binding by rapacuronium. CONCLUSIONS: Our data demonstrate a novel dichotomy in rapacuronium effects at odd-numbered muscarinic receptors. Rapacuronium accelerates the rate of ACh binding but decreases its affinity under equilibrium conditions. This results in potentiation of receptor activation at low concentrations of rapacuronium (1 microM) but not at high concentrations (10 microM). These observations highlight the relevance and necessity of performing physiological tests under non-equilibrium conditions in evaluating the functional effects of allosteric modulators at muscarinic receptors. They also provide molecular basis for potentiating M3 receptor-mediated bronchoconstriction.
- MeSH
- acetylcholin metabolismus MeSH
- agonisté muskarinových receptorů farmakologie MeSH
- alosterická regulace účinky léků MeSH
- alosterické místo účinky léků MeSH
- CHO buňky MeSH
- Cricetulus MeSH
- guanosin 5'-O-(3-thiotrifosfát) metabolismus MeSH
- kompetitivní vazba účinky léků MeSH
- křečci praví MeSH
- N-methylskopolamin metabolismus MeSH
- nedepolarizující myorelaxancia farmakologie MeSH
- radioligandová zkouška metody MeSH
- receptory muskarinové účinky léků fyziologie MeSH
- vekuronium analogy a deriváty farmakologie MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetylcholin MeSH
- agonisté muskarinových receptorů MeSH
- guanosin 5'-O-(3-thiotrifosfát) MeSH
- N-methylskopolamin MeSH
- nedepolarizující myorelaxancia MeSH
- rapacuronium MeSH Prohlížeč
- receptory muskarinové MeSH
- vekuronium MeSH
We investigated the influence of membrane cholesterol content on preferential and non-preferential signaling through the M(2) muscarinic acetylcholine receptor expressed in CHO cells. Cholesterol depletion by 39% significantly decreased the affinity of M(2) receptors for [(3)H]-N-methylscopolamine ([(3)H]-NMS) binding and increased B(max) in intact cells and membranes. Membranes displayed two-affinity agonist binding sites for carbachol and cholesterol depletion doubled the fraction of high-affinity binding sites. In intact cells it also reduced the rate of agonist-induced receptor internalization and changed the profile of agonist binding from a single site to two affinity states. Cholesterol enrichment by 137% had no effects on carbachol E(max) of cAMP synthesis inhibition and on cAMP synthesis stimulation and inositolphosphates (IP) accumulation at higher agonist concentrations (non-preferred pathways). On the other hand, cholesterol depletion significantly increased E(max) of cAMP synthesis inhibition or stimulation without change in potency, and decreased E(max) of IP accumulation. Noteworthy, modifications of membrane cholesterol had no effect on membrane permeability, oxidative activity, protein content, or relative expression of G(s), G(i/o), and G(q/11) alpha subunits. These results demonstrate distinct changes of M(2) receptor signaling through both preferential and non-preferential G-proteins consequent to membrane cholesterol depletion that occur at the level of receptor/G-protein/effector protein interactions in the cell membrane. The significant decrease of IP accumulation by cholesterol depletion was also observed in cells expressing M(3) receptors and by both cholesterol depletion and enrichment in cells expressing M(1) receptors indicating relevance of reduced G(q/11) signaling for the pathogenesis of Alzheimer's disease.
- MeSH
- acetylcholin analogy a deriváty MeSH
- antagonisté muskarinových receptorů farmakologie MeSH
- beta-cyklodextriny farmakologie MeSH
- buněčná membrána účinky léků metabolismus MeSH
- CHO buňky MeSH
- cholesterol metabolismus MeSH
- Cricetulus MeSH
- karbachol analogy a deriváty metabolismus farmakologie MeSH
- křečci praví MeSH
- lidé MeSH
- N-methylskopolamin metabolismus farmakologie MeSH
- proteiny vázající GTP metabolismus MeSH
- receptor muskarinový M2 metabolismus MeSH
- systémy druhého messengeru * účinky léků MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- acetylcholin MeSH
- antagonisté muskarinových receptorů MeSH
- beta-cyklodextriny MeSH
- cholesterol MeSH
- karbachol MeSH
- methyl-beta-cyclodextrin MeSH Prohlížeč
- N-methylskopolamin MeSH
- proteiny vázající GTP MeSH
- receptor muskarinový M2 MeSH
Allosteric enhancement of the affinity of muscarinic receptors for their ligands offers a new way to influence cholinergic neurotransmission. The structure of the allosteric binding domain(s) and the features of agonists, antagonists and modulators which determine the occurrence of either positive or negative cooperativity require clarification. We tested interactions between allosteric modulators alcuronium, strychnine and brucine and eight antagonists at muscarinic receptors expressed in CHO cells. In experiments with unlabeled antagonists, all three modulators enhanced the affinity for 4-diphenylacetoxy-N-dimethylpiperidinium (4-DAMP) at the M2 receptors, and strychnine did so also at the M4 receptors. Positive interactions were also observed between alcuronium and L-hyoscyamine (M2) and scopolamine (M2), between strychnine and butylscopolamine (M4), L-hyoscyamine (M2 and M4) and scopolamine (M4), and between brucine and scopolamine (M2). Positive effects of alcuronium, strychnine and brucine on the affinity of the M2 receptors for 4-DAMP have been confirmed by direct measurements of the binding of [3H]-4-DAMP. A comparison of molecular models of several antagonists which are esters revealed that antagonists in which the distance between the N and the carboxyl C atoms corresponds to five chemical bonds are more likely to display positive cooperativity with alcuronium at the M2 receptors than the antagonists in which the N-carboxyl C distance corresponds to four chemical bonds.
- MeSH
- alkuronium farmakologie MeSH
- alosterická regulace MeSH
- antagonisté muskarinových receptorů chemie farmakologie MeSH
- CHO buňky MeSH
- křečci praví MeSH
- N-methylskopolamin metabolismus MeSH
- piperidiny farmakologie MeSH
- radioligandová zkouška MeSH
- strychnin analogy a deriváty farmakologie MeSH
- tritium MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 4-diphenylacetoxy-1,1-dimethylpiperidinium MeSH Prohlížeč
- alkuronium MeSH
- antagonisté muskarinových receptorů MeSH
- brucine MeSH Prohlížeč
- N-methylskopolamin MeSH
- piperidiny MeSH
- strychnin MeSH
- tritium MeSH