Omega-3 fatty acids in nutrition and supplementation Omega-3 fatty acids (n-3 PUFAs) have gained significant attention in the field of nutrition and health due to their many positive effects. This article provides a review of n-3 PUFAs, including their definition, classification, structural and functional characteristics, as well as their importance in nutrition and supplementation. In addition, it describes nutritional sources, discusses maximum doses, and describes recommended daily doses.
- Klíčová slova
- ALA, DHA., EPA, omega-3 fatty acids,
- MeSH
- kyseliny mastné omega-3 * aplikace a dávkování MeSH
- lidé MeSH
- potravní doplňky * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- kyseliny mastné omega-3 * MeSH
Hemolysis and eryptosis contribute to anemia encountered in patients undergoing chemotherapy. Eicosapentaenoic acid (EPA) is an omega-3 dietary fatty acid that has anticancer potential by inducing apoptosis in cancer cells, but its effect on the physiology and lifespan of red blood cells (RBCs) is understudied. Human RBCs were exposed to anticancer concentrations of EPA (10-100 ?M) for 24 h at 37 °C. Acetylcholinesterase (AChE) activity and hemolysis were measured by colorimetric assays whereas annexin-V-FITC and forward scatter (FSC) were employed to identify eryptotic cells. Oxidative stress was assessed by H2DCFDA and intracellular Ca2+ was measured by Fluo4/AM. EPA significantly increased hemolysis and K+ leakage, and LDH and AST activities in the supernatants in a concentration-dependent manner. EPA also significantly increased annexin-V-FITC-positive cells and Fluo4 fluorescence and decreased FSC and AChE activity. A significant reduction in the hemolytic activity of EPA was noted in the presence extracellular isosmotic urea, 125 mM KCl, and polyethylene glycol 8000 (PEG 8000), but not sucrose. In conclusion, EPA stimulates hemolysis and eryptosis through Ca2+ buildup and AChE inhibition. Urea, blocking KCl efflux, and PEG 8000 alleviate the hemolytic activity of EPA. The anticancer potential of EPA may be optimized using Ca2+ channel blockers and chelators to minimize its toxicity to off-target tissue. Keywords: EPA, Eryptosis, Hemolysis, Calcium, Anticancer.
- MeSH
- acetylcholinesterasa metabolismus MeSH
- cholinesterasové inhibitory * farmakologie MeSH
- eryptóza účinky léků MeSH
- erytrocytární membrána * účinky léků metabolismus MeSH
- erytrocyty účinky léků metabolismus MeSH
- fosfatidylseriny * metabolismus MeSH
- hemolýza * účinky léků MeSH
- kyselina eikosapentaenová * farmakologie MeSH
- lidé MeSH
- vápník metabolismus MeSH
- vápníková signalizace * účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- cholinesterasové inhibitory * MeSH
- fosfatidylseriny * MeSH
- kyselina eikosapentaenová * MeSH
- vápník MeSH
Docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid with promising anticancer potential. Anaemia is a frequent adverse effect of anticancer treatment caused in part by eryptosis and haemolysis. Thus, it is important to investigate the role of DHA in red blood cell (RBC) death. RBCs were treated with anticancer concentrations (10-100 μM) of DHA under different physiological conditions, and fluorescence-assisted cell sorting was employed to measure eryptotic markers. Cell membrane scrambling was detected by annexin-V-FITC labelling, cytoplasmic Ca2+ by Fluo4/AM, cell size by forward scatter (FSC), and oxidative stress by H2DCFDA. Haemolytic markers were also assayed by photometric methods. DHA caused significant phospholipid scrambling with Ca2+ accumulation, loss of cellular volume, and oxidative stress. These changes were associated with dacrocyte formation, as revealed by electron microscopy. Moreover, DHA exhibited a dual effect on membrane integrity: it was haemolytic under isotonic conditions and anti-haemolytic in hypotonic environments. Importantly, inhibition of Rac1 GTPase activity with NSC23766 significantly reduced DHA-mediated haemolysis, as did co-administration of either sucrose or polyethylene glycol 8,000. Conversely, the presence of 125 mM KCl and urea without extracellular Ca2+ significantly exacerbated DHA toxicity. In conclusion, this is the first report that identifies key biochemical mechanisms underlying the cytotoxic effects of DHA in RBCs, promoting further development and validation of DHA in anticancer therapy.
- Klíčová slova
- DHA, Rac GTPase, anticancer, calcium, eryptosis, haemolysis,
- MeSH
- eryptóza * účinky léků MeSH
- erytrocyty účinky léků metabolismus MeSH
- hemolýza * účinky léků MeSH
- kyseliny dokosahexaenové * farmakologie MeSH
- lidé MeSH
- oxidační stres * účinky léků MeSH
- signální transdukce účinky léků MeSH
- vápník * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyseliny dokosahexaenové * MeSH
- vápník * MeSH
Long-chain polyunsaturated fatty acids (LC-PUFA) like arachidonic acid (ARA, 20:4n-6), eicosapentaenoic acid (EPA, 20:5n-3), and docosahexaenoic acid (DHA, 22:6n-3) constitute one-third to half of fish sperm lipids. Fish sperm is rich in phospholipid (PL)-primarily phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin. DHA is generally the most abundant LC-PUFA in each PL class, followed by competition between ARA and EPA. While the total n-6: n-3 PUFA ratio does not correlate significantly with sperm biomechanics, LC-PUFA do. DHA positively influences sperm biomechanics, while ARA and EPA may be negatively associated. Fish sperm maintains lower (≤1) total n-6 PUFA per unit of n-3 PUFA but keep a higher (>1) ARA per unit EPA. A weak dietary influence on sperm EPA and DHA exists but not on ARA. The DHA: EPA ratio in fish sperm is often >1, though values <1 occur. Certain species cannot fortify DHA sufficiently during spermatogenesis, diverging through whole genome duplications. Fish sperm can show ARA: EPA ratios greater or less than 1, due to shifts in prostaglandin pathways in different evolutionary eras. DHA-rich PL bilayers provide unique packing and fusogenic properties, with ARA/EPA-derived eicosanoids guiding sperm rheotaxis/chemotaxis, modulated by DHA-derived resolvins. Docosapentaenoic acid (DPA, 22:5n-3) sometimes substitutes for DHA in fish sperm.
- Klíčová slova
- Aquaculture animal nutrition, Evolutionary adaptations, Fish sperm, Lipidomics, Motility mechanisms, Reproductive fitness,
- MeSH
- biologická evoluce MeSH
- biomechanika MeSH
- dieta veterinární MeSH
- kyseliny dokosahexaenové metabolismus chemie analýza MeSH
- nenasycené mastné kyseliny * metabolismus chemie MeSH
- ryby * metabolismus fyziologie MeSH
- spermie * metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- kyseliny dokosahexaenové MeSH
- nenasycené mastné kyseliny * MeSH
Metabolic dysfunction-associated steatotic liver disease (MASLD) occurs in subjects with obesity and metabolic syndrome. MASLD may progress from simple steatosis (i.e., hepatic steatosis) to steatohepatitis, characterized by inflammatory changes and liver cell damage, substantially increasing mortality. Lifestyle measures associated with weight loss and/or appropriate diet help reduce liver fat accumulation, thereby potentially limiting progression to steatohepatitis. As for diet, both total energy and macronutrient composition significantly influence the liver's fat content. For example, the type of dietary fatty acids can affect the metabolism of lipids and hence their tissue accumulation, with saturated fatty acids having a greater ability to promote fat storage in the liver than polyunsaturated ones. In particular, polyunsaturated fatty acids of n-3 series (omega-3), such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have been intensively studied for their antisteatotic effects, both in preclinical animal models of obesity and hepatic steatosis and in overweight/obese patients. Their effects may depend not only on the dose and duration of administration of omega-3, or DHA/EPA ratio, but also on the lipid class used for their supplementation. This review summarizes the available evidence from recent comparative studies using omega-3 supplementation via different lipid classes. Albeit the evidence is mainly limited to preclinical studies, it suggests that phospholipids and possibly wax esters could provide greater efficacy against MASLD compared to traditional chemical forms of omega-3 supplementation (i.e., triacylglycerols, ethyl esters). This cannot be attributed solely to improved EPA and/or DHA bioavailability, but other mechanisms may be involved. Keywords: MASLD • Metabolic dysfunction-associated steatotic liver disease • NAFLD • Non-alcoholic fatty liver disease • n-3 polyunsaturated fatty acids.
- MeSH
- játra * metabolismus účinky léků patologie MeSH
- kyseliny mastné omega-3 * aplikace a dávkování metabolismus terapeutické užití MeSH
- lidé MeSH
- metabolismus lipidů účinky léků MeSH
- nealkoholová steatóza jater metabolismus farmakoterapie dietoterapie patologie MeSH
- obezita metabolismus farmakoterapie dietoterapie patologie MeSH
- potravní doplňky * MeSH
- ztučnělá játra metabolismus farmakoterapie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- kyseliny mastné omega-3 * MeSH
Diabetic cardiomyopathy may result from the overproduction of ROS, TRPM2 and TRPV2. Moreover, the therapeutic role of ginger, omega-3 fatty acids, and their combinations on the expression of TRPM2 and TRPV2 and their relationship with apoptosis, inflammation, and oxidative damage in heart tissue of rats with type 2 diabetes have not yet been determined. Therefore, this study aimed to investigate the therapeutic effects of ginger and omega-3 fatty acids on diabetic cardiomyopathy by evaluating the cardiac gene expression of TRPM2 and TRPV2, oxidative damage, inflammation, and apoptosis in male rats. Ninety adult male Wistar rats were equally divided into nine control, diabetes, and treated diabetes groups. Ginger extract (100 mg/kg) and omega-3 fatty acids (50, 100, and 150 mg/kg) were orally administrated in diabetic rats for 6 weeks. Type 2 diabetes was induced by feeding a high-fat diet and a single dose of STZ (40 mg/kg). Glucose, cardiac troponin I (cTnI), lipid profile, insulin in serum, and TNF-alpha IL-6, SOD, MDA, and CAT in the left ventricle of the heart were measured. The cardiac expression of TRPM2, TRPV2, NF-kappaB, Bcl2, Bax, Cas-3, and Nrf-2 genes was also measured in the left ventricle of the heart. An electrocardiogram (ECG) was continuously recorded to monitor arrhythmia at the end of the course. The serum levels of cTnI, glucose, insulin, and lipid profile, and the cardiac levels of MDA, IL-6, and TNF-alpha increased in the diabetic group compared to the control group (p<0.05). Moreover, the cardiac levels of SOD and CAT decreased in the diabetic group compared to the control group (p<0.05). The cardiac expression of TRPM2, TRPV2, NF-kappaB, Bax, and Cas-3 increased and Bcl2 and Nrf-2 expression decreased in the diabetic group compared to the control group (p<0.05). However, simultaneous and separate treatment with ginger extract and omega-3 fatty acids (50, 100, and 150 mg/kg) could significantly moderate these changes (p<0.05). The results also showed that the simultaneous treatment of ginger extract and different doses of omega-3 fatty acids have improved therapeutic effects than their individual treatments (p<0.05). It can be concluded that ginger and omega-3 fatty acids showed protective effects against diabetic cardiomyopathy by inhibiting inflammation, apoptosis and oxidative damage of the heart and reducing blood glucose and cardiac expression of TRPM2 and TRPV2. Combining ginger and omega-3 in the diet may provide a natural approach to reducing the risk or progression of diabetic cardiomyopathy while preserving heart structure and function.
- MeSH
- diabetes mellitus 2. typu farmakoterapie metabolismus komplikace MeSH
- diabetická kardiomyopatie * metabolismus farmakoterapie prevence a kontrola MeSH
- experimentální diabetes mellitus * farmakoterapie metabolismus MeSH
- kationtové kanály TRPM metabolismus genetika MeSH
- kationtové kanály TRPV metabolismus genetika MeSH
- krysa rodu Rattus MeSH
- kyseliny mastné omega-3 * farmakologie aplikace a dávkování terapeutické užití MeSH
- oxidační stres účinky léků MeSH
- potkani Wistar * MeSH
- potravní doplňky MeSH
- rostlinné extrakty * farmakologie terapeutické užití aplikace a dávkování MeSH
- zázvor lékařský * chemie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kationtové kanály TRPM MeSH
- kationtové kanály TRPV MeSH
- kyseliny mastné omega-3 * MeSH
- rostlinné extrakty * MeSH
Aging is an inevitable and complex biological process that is associated with a gradual decline in physiological functions and a higher disease susceptibility. Omega-3 fatty acids, particularly docosahexaenoic acid, play a crucial role in maintaining brain health and their deficiency is linked to age-related cognitive decline. Combining omega-3-rich diets with exercise may enhance cognitive function more effectively, as both share overlapping neurobiological and physiological effects. This study aimed to evaluate the effect of exercise and omega-3 fatty acid (FA) supplementation in two different doses (160 mg/kg and 320 mg/kg) on anxiety-like behavior and cognitive abilities in both adult and aged rats. Male Wistar rats (4-5- and 23-24-month-old) were randomly divided into seven groups: 3-week control supplemented with placebo without exercise, low-dose omega-3 FAs, high-dose omega-3 FAs, 7-week control supplemented with placebo without exercise, exercise-only, low-dose omega-3 FAs with exercise, and high-dose omega-3 FAs with exercise. The administered oil contained omega-3 FAs with DHA:EPA in a ratio of 1.5:1. Our results indicate that aging negatively impacts the locomotor and exploratory activity of rats. In adult rats, a low dose of omega-3 FAs reduces locomotor activity when combined with exercise while high dose of omega-3 FAs reduces anxiety-like behavior and improves recognition memory when combined with exercise. The combination of omega-3 FAs and exercise had varying impacts on behavior, suggesting a need for further research in this area to fully understand their therapeutic efficacy in the context of cognitive changes associated with aging.
- MeSH
- chování zvířat účinky léků MeSH
- kognice účinky léků MeSH
- kondiční příprava zvířat * fyziologie MeSH
- krysa rodu Rattus MeSH
- kyseliny mastné omega-3 * aplikace a dávkování farmakologie MeSH
- lokomoce účinky léků fyziologie MeSH
- pátrací chování * účinky léků MeSH
- potkani Wistar * MeSH
- potravní doplňky * MeSH
- stárnutí * psychologie účinky léků MeSH
- úzkost * prevence a kontrola MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyseliny mastné omega-3 * MeSH
This study investigated the effect of eicosapentaenoic acid (EPA) on insulin resistance in pregnant mice with gestational diabetes mellitus (GDM) and underlying mechanism. C57BL/6 mice fed with a high-fat diet for 4 weeks and the newly gestated were selected and injected with streptozotocin for GDM modeling. We demonstrated that the fasting insulin levels (FINS) and insulin sensitivity index (ISI) in serum and blood glucose level were significantly higher in GDM group than in normal control (NC) group. The low or high dose of EPA intervention reduced these levels, and the effect of high dose intervention was more significant. The area under the curve in GDM group was higher than that of NC group, and then gradually decreased after low or high dose of EPA treatment. The serum levels of TC, TG and LDL were increased in GDM group, while decreased in EPA group. GDM induced down-regulation of HDL level, and the low or high dose of EPA gradually increased this level. The levels of p-AKT2Ser, p-IRS-1Tyr, GLUT4, and ratios of pIRS-1Tyr/IRS-1 and pAKT2Ser/AKT2 in gastrocnemius muscle were reduced in GDM group, while low or high dose of EPA progressively increased these alterations. GDM enhanced TLR4, NF-kappaB p65, IL-1beta, IL-6 and TNF-alpha levels in placental tissues, and these expressions were declined at different dose of EPA, and the decrease was greater at high dose. We concluded that EPA receded the release of inflammatory factors in the placental tissues by inhibiting the activation of TLR4 signaling, thereby alleviating the IR.
- MeSH
- gestační diabetes * MeSH
- inzulin farmakologie MeSH
- inzulinová rezistence * MeSH
- krevní glukóza metabolismus MeSH
- kyselina eikosapentaenová farmakologie terapeutické užití MeSH
- lidé MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- placenta metabolismus MeSH
- těhotenství MeSH
- toll-like receptor 4 metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- inzulin MeSH
- krevní glukóza MeSH
- kyselina eikosapentaenová MeSH
- toll-like receptor 4 MeSH
(1) Objectives: Intestinal failure in home parenteral nutrition patients (HPNPs) results in oxidative stress and liver damage. This study investigated how a high dose of fish oil (FO) added to various lipid emulsions influences antioxidant status and liver function markers in HPNPs. (2) Methods: Twelve HPNPs receiving Smoflipid for at least 3 months were given FO (Omegaven) for a further 4 weeks. Then, the patients were randomized to subsequently receive Lipoplus and ClinOleic for 6 weeks or vice versa plus 4 weeks of Omegaven after each cycle in a crossover design. Twelve age- and sex-matched healthy controls (HCs) were included. (3) Results: Superoxide dismutase (SOD1) activity and oxidized-low-density lipoprotein concentration were higher in all baseline HPN regimens compared to HCs. The Omegaven lowered SOD1 compared to baseline regimens and thus normalized it toward HCs. Lower paraoxonase 1 activity and fibroblast growth factor 19 (FGF19) concentration and, on the converse, higher alkaline phosphatase activity and cholesten concentration were observed in all baseline regimens compared to HCs. A close correlation was observed between FGF19 and SOD1 in baseline regimens. (4) Conclusions: An escalated dose of FO normalized SOD1 activity in HPNPs toward that of HCs. Bile acid metabolism was altered in HPNPs without signs of significant cholestasis and not affected by Omegaven.
- Klíčová slova
- bile acids, chronic intestinal failure, fibroblast growth factor 19, liver function tests, oxidative stress, short bowel syndrome,
- MeSH
- cholestáza * MeSH
- lidé MeSH
- parenterální výživa doma * metody MeSH
- rybí oleje MeSH
- sójový olej MeSH
- superoxid dismutáza 1 MeSH
- tukové emulze intravenózní MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
- Názvy látek
- rybí oleje MeSH
- sójový olej MeSH
- superoxid dismutáza 1 MeSH
- tukové emulze intravenózní MeSH
The pathogenesis of non-alcoholic fatty liver disease (NAFLD) is associated with abnormalities of liver lipid metabolism. On the contrary, a diet enriched with n-3 polyunsaturated fatty acids (n-3-PUFAs) has been reported to ameliorate the progression of NAFLD. The aim of our study was to investigate the impact of dietary n-3-PUFA enrichment on the development of NAFLD and liver lipidome. Mice were fed for 6 weeks either a high-fat methionine choline-deficient diet (MCD) or standard chow with or without n-3-PUFAs. Liver histology, serum biochemistry, detailed plasma and liver lipidomic analyses, and genome-wide transcriptome analysis were performed. Mice fed an MCD developed histopathological changes characteristic of NAFLD, and these changes were ameliorated with n-3-PUFAs. Simultaneously, n-3-PUFAs decreased serum triacylglycerol and cholesterol concentrations as well as ALT and AST activities. N-3-PUFAs decreased serum concentrations of saturated and monounsaturated free fatty acids (FAs), while increasing serum concentrations of long-chain PUFAs. Furthermore, in the liver, the MCD significantly increased the hepatic triacylglycerol content, while the administration of n-3-PUFAs eliminated this effect. Administration of n-3-PUFAs led to significant beneficial differences in gene expression within biosynthetic pathways of cholesterol, FAs, and pro-inflammatory cytokines (IL-1 and TNF-α). To conclude, n-3-PUFA supplementation appears to represent a promising nutraceutical approach for the restoration of abnormalities in liver lipid metabolism and the prevention and treatment of NAFLD.
- Klíčová slova
- lipidome, lipids, n-3 fatty acids, non-alcoholic fatty liver disease, non-alcoholic steatohepatitis,
- MeSH
- cholesterol metabolismus MeSH
- cholin metabolismus MeSH
- dieta s vysokým obsahem tuků škodlivé účinky MeSH
- játra metabolismus MeSH
- kyseliny mastné neesterifikované metabolismus MeSH
- kyseliny mastné omega-3 * farmakologie terapeutické užití metabolismus MeSH
- methionin metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nealkoholová steatóza jater * etiologie genetika MeSH
- nenasycené mastné kyseliny metabolismus MeSH
- Racemethionin metabolismus farmakologie MeSH
- triglyceridy metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cholesterol MeSH
- cholin MeSH
- kyseliny mastné neesterifikované MeSH
- kyseliny mastné omega-3 * MeSH
- methionin MeSH
- nenasycené mastné kyseliny MeSH
- Racemethionin MeSH
- triglyceridy MeSH