Although the Major Histocompatibility Complex (MHC) has been repeatedly associated with susceptibility to equine sarcoid, a disease associated with bovine papillomavirus infection, the role of the MHC in the mechanisms of the disease is not fully understood. The objectives of our work were to analyze associations between polymorphic markers of the MHC genomic subregions and of the Natural Killer Complex (NKC) genomic region and the presence of sarcoid in Arabian horses. Microsatellite loci located in the MHC class I, II and III subregions and two MHC class II genes (DRA, DQA1), along with a set of NKC (KLRA, CLEC subregions) microsatelllite markers were genotyped. Fifteen microsatellites of the standard parentage kit, located outside the MHC and NKC regions, were tested as controls. Standard chi-square and Fisher tests with Bonferroni corrections were used for association analyses. Significant associations of MHC class II and MHC class I_KLRA polymorphic markers with the presence of clinical sarcoid were observed. These findings are consistent with biological theory and indicate a role of MHC class I, class II and KLRA molecules in adaptive as well as in innate immune responses to equine sarcoid. Although limited to Arabian horses, these data point to an as yet unadressed hypothesis regarding the possible roles of NK cells in the pathogenesis of equine sarcoid.
- Klíčová slova
- Association, Horse, KLRA, MHC, Sarcoid,
- MeSH
- genetická predispozice k nemoci * MeSH
- genotyp MeSH
- geny MHC třídy I * genetika MeSH
- geny MHC třídy II * genetika MeSH
- koně MeSH
- MHC antigeny II. třídy genetika MeSH
- mikrosatelitní repetice genetika MeSH
- nemoci koní * genetika imunologie MeSH
- sarkoidóza * veterinární genetika imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- MHC antigeny II. třídy MeSH
Background/Objectives: The increasing pressure from pathogens and parasites on Apis mellifera populations is resulting in significant colony losses. It is desirable to identify resistance-associated single-nucleotide polymorphisms (SNPs) and their variability for the purpose of breeding resilient honeybee lines. This study examined the genetic diversity of 13 SNPs previously studied for associations with various resistance-providing traits, including six linked to Varroa-specific hygiene, five linked to suppressed mite reproduction, one linked to immune response, and one linked to chalkbrood resistance. Methods: Genotyping was performed using a novel SNaPshot genotyping panel designed for this study. The sample pool consisted of 308 honeybee samples in total, covering all 77 administrative districts of the Czech Republic. Results: All examined loci were polymorphic. The frequency of positive alleles in our population is medium to low, depending on the specific SNP. An analysis of genotype frequencies revealed that most loci exhibited the Hardy-Weinberg equilibrium. A comparison of the allele and genotype frequencies of the same locus between samples from hives and samples from flowers revealed no significant differences. The genetic diversity, as indicated by the heterozygosity values, ranged from 0.05 to 0.50. The fixation index (F) was, on average, close to zero, indicating minimal influence of inbreeding or non-random mating on the genetic structure of the analyzed samples. Conclusions: The obtained results provide further insights into the genetic variation of SNPs associated with the immune response and resistance to pathogens in honeybee populations in the Czech Republic. This research provides a valuable foundation for future studies of honeybee diversity and breeding.
- Klíčová slova
- Apis mellifera, SMR, SNP, VSH, Varroa resistance, genetic diversity, hygienic behavior, immune response,
- MeSH
- frekvence genu MeSH
- genotyp MeSH
- genotypizační techniky metody MeSH
- jednonukleotidový polymorfismus * MeSH
- odolnost vůči nemocem * genetika MeSH
- Varroidae patogenita MeSH
- včely genetika parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
To date, no study has been conducted to investigate the diversity in honeybee populations of Apis mellifera in the Czech Republic. Between 2022 and 2023, worker bees were collected from colonies distributed throughout the Czech Republic in 77 districts, and their genetic differences were examined using 22 microsatellite loci. The samples were obtained from hives (n = 3647) and through the process of capture on flowers (n = 553). Genetic diversity parameters were assessed for both populations in all 77 districts. The findings demonstrated that honeybee populations exhibit moderate genetic diversity, as evidenced by the number of observed alleles, the Shannon index, and heterozygosity values. There was no discrepancy in diversity between hive and flower samples. Diversity characteristics were determined: mean observed heterozygosity 0.55 (hives) and 0.56 (flowers), and fixation index 0.58 for both populations. The average number of alleles per locus was 13.77 and 11.18 from hives and flowers, respectively. The low FST and FIS values (they measured the level of genetic differentiation between populations and the level of inbreeding, respectively) suggest the absence or minimal genetic diversity within and among studied populations. The genetic variation was calculated as 2% and 1% between populations, 8% and 6% between individuals within populations, and 91% and 93% between all individuals in samples from hives and flowers, respectively. Cluster and DAPC (discriminant analysis principal component) analysis classified the bee samples collected from across the country into three and five to six distinguishable groups, respectively. The honeybee population in the Czech Republic displays sufficient diversity and a partial structure. However, there appears to be no correlation between the genetic groups and the geographic regions to which they are assigned.
- Klíčová slova
- Apis mellifera, Central Europe, district, genetic group, population genetics, sampling method,
- Publikační typ
- časopisecké články MeSH
The study aimed to analyze the genetic diversity in the Czech population of Apis mellifera using mitochondrial DNA markers, tRNAleu-cox2 intergenic region and cox1 gene. A total of 308 samples of bees were collected from the entire Czech Republic (from colonies and flowers in 13 different regions). Following sequencing, several polymorphisms and haplotypes were identified. Analysis of tRNAleu-cox2 sequences revealed three DraI haplotypes (C, A1, and A4). The tRNAleu-cox2 region yielded 10 C lineage haplotypes, one of which is a newly described variant. Three A lineage haplotypes were identified, two of which were novel. A similar analysis of cox1 sequences yielded 16 distinct haplotypes (7 new) within the population. The most prevalent tRNAleu-cox2 haplotype identified was C1a, followed by C2a, C2c, C2l, and C2d. For the cox1 locus, the most frequent haplotypes were HpB02, HpB01, HpB03, and HpB04. The haplotype and nucleotide diversity indices were high in both loci, in tRNAleu-cox2 with values of 0.682 and 0.00172, respectively, and in cox1 0.789 and 0.00203, respectively. The Tajima's D values were negative and lower in tRNAleu-cox2 than in cox1. The most frequent haplotypes were uniformly distributed across all regions of the Czech Republic. No haplotype of the indigenous M lineage was identified. High diversity and the occurrence of rare haplotypes indicate population expansion and continuous import of tribal material of the C lineage.
- Klíčová slova
- A lineage, Apis mellifera, cox1, introgression, mitochondrial DNA, population, tRNAleu-cox2,
- Publikační typ
- časopisecké články MeSH
Food waste is currently a widely discussed phenomenon with significant economic and social consequences. One third of the food produced in the world is wasted at various points along the food supply chain. This article presents a comprehensive study that examines consumer behavior in dealing with food waste and activities in the composting process that enable waste sanitation. The survey conducted as part of this study showed that consumers want to eliminate odors, are concerned about potential infections, and generally sort less food waste. This study suggested that the addition of appropriate additives could be a solution. The results indicated that additives could eliminate negative side effects such as unpleasant odors, the presence of insects and rodents, and act as a prevention of the occurrence of pathogenic organisms. Tea tree oil showed the best positive physical and chemical properties among the additives tested (CaCO3 and citric acid) with a significant effect on inhibiting the growth of bacterial strains such as Salmonella strains and had the strongest antibacterial effect, neutralized unpleasant odors, and stabilized the waste. The use of additives could be a future solution to meet consumer demands, improve the quality of food waste and advance the circular economy to improve the sustainability of agricultural systems.
- Klíčová slova
- Antibiotic resistance, Antibiotic sensitivity, Composting factors, Consumer willingness and challenges, Effects of various additives, Food waste sorting, Microbiological analysis,
- MeSH
- chování spotřebitelů * MeSH
- kompostování metody MeSH
- lidé MeSH
- nakládání s odpady * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Limb problems are one of the most common problems with fast-growing meat-type chickens. Various bone abnormalities, which can lead to limping, bone weakness, or even fractures, bring overall discomfort to birds and a loss of production. Genetic aspects are often associated with these side effects on bone stability and are also cited as the dominant cause. These points to a close negative relationship of genetic selection for rapid growth with traits involved in bone integrity. Due to the assumption of an additive genetic background, improvements through genetic tools can be used. Our study is focused on selected genes of important signaling pathways for bone metabolism. We tried to detect polymorphisms that would show associations with selected bone parameters in a total of 48 broilers. Those were fast-growing Ross 308 hybrids and slow-growing Hubbard M22BxJA87A hybrids. The TNFRSF11A and WISP1 genes were tested. A total of fourteen polymorphisms were found, three of them were synonymous and five in the intron. In the case of four polymorphisms found in exons of the TNFRSF11A gene (c.11G > T, c.31G > A, c.37C > G, c.514G > A), associations with the observed bone parameters (bone strength, bone dimensions and bone mass) were demonstrated. The genetic architecture of bone traits is not fully understood, therefore the present study and the knowledge gained can help to increase the potential in poultry breeding processes and thus reduce the death of individuals.
- Klíčová slova
- Bone, Broiler, Gene, Polymorphism, TNFRSF11A, WNT1,
- Publikační typ
- časopisecké články MeSH
The major histocompatibility complex (MHC) with its class I and II genes plays a crucial role in the immune response to pathogens by presenting oligopeptide antigens to various immune response effector cells. In order to counteract the vast variability of infectious agents, MHC class I and II genes usually retain high levels of SNPs mainly concentrated in the exons encoding the antigen binding sites. The aim of the study was to reveal new variability of selected MHC genes with a special focus on MHC class I physical haplotypes. Long-range NGS to was used to identify exon 2-exon 3 alleles in three genetically distinct horse breeds. A total of 116 allelic variants were found in the MHC class I genes Eqca-1, Eqca-2, Eqca-7 and Eqca-Ψ, 112 of which were novel. The MHC class II DRA locus was confirmed to comprise five exon 2 alleles, and no new sequences were observed. Additional variability in terms of 15 novel exon 2 alleles was identified in the DQA1 locus. Extensive overall variability across the entire MHC region was confirmed by an analysis of MHC-linked microsatellite loci. Both diversifying and purifying selection were detected within the MHC class I and II loci analyzed.
- Klíčová slova
- Eqca, Equus caballus, MHC, MHC class I, MHC class II, MSATs,
- MeSH
- alely MeSH
- exony genetika MeSH
- geny MHC třídy II * MeSH
- hlavní histokompatibilní komplex MeSH
- koně genetika MeSH
- MHC antigeny I. třídy * MeSH
- MHC antigeny II. třídy genetika MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- MHC antigeny I. třídy * MeSH
- MHC antigeny II. třídy MeSH
We identified and characterized 11 polymorphic microsatellite markers suitable for routine testing (three in the MHC class I sub-region, four in MHC class II and four in the MHC class III sub-region) of dromedaries and Bactrian camels. In total, 38 dromedaries and 33 Bactrian camels were genotyped, and interspecific differences were observed in the numbers of alleles and in allelic frequencies, as well as in the observed heterozygosity. These loci may be used as markers to study the adaptive genetic diversity of the MHC region in Old World camels.
- Klíčová slova
- Camelus bactrianus, Camelus dromedarius, camels, genetic diversity, major histocompatibility complex, microsatellite markers,
- Publikační typ
- časopisecké články MeSH
The Wnt signaling pathway plays a critical role in almost all aspects of skeletal development and homeostasis. Many studies suggest the importance of this signaling pathway in connection with bone metabolism through many skeletal disorders caused by mutations in Wnt signaling genes. The knowledge gained through targeting this pathway is of great value for skeletal health and diseases, for example of increased bone mass in the case of osteoporosis. Our objective was to focus on the detection of single nucleotide polymorphisms and investigate the associations between possible polymorphisms in selected genes that are part of those signaling pathways and parameters of bones in hens of ISA Brown hybrids (bone breaking strength, length, width, and bone mass). Different regions of the GPR177, ESR1 and RUNX2 genes were studied, using PCR and sequencing, in a total of forty-eight samples for each marker. Thirteen polymorphisms have been discovered in selected regions of studied genes, whereas these polymorphisms were only within the GPR177 gene. Eight of these polymorphisms were synonymous and five were in the intron. The tested regions of the ESR1 and RUNX2 genes were monomorphic. The only statistically significant difference was found within the GPR177 gene (exon 2) and the bone length parameter, in the c.443 + 86G > A polymorphism. However, this polymorphism was found in the intron, and no other one was found within the selected regions to show associations with the observed bone parameters.
- Klíčová slova
- Bone, Laying hens, Osteoporosis, Polymorphism, Wnt signaling pathway,
- Publikační typ
- časopisecké články MeSH
NREP (neuronal regeneration related protein homolog) plays a role in the transformation of neural, muscle, and fibroblast cells and in smooth muscle myogenesis. The NREP gene was selected for detailed study as an expressional and functional candidate gene on the basis of data from the expression microarray, which detected the differences in gene expression between Czech Large White pigs and wild boars in the longissimus lumborum et thoracis and biceps femoris muscle tissues. Quantitative real-time PCR results confirmed that porcine NREP was expressed in both skeletal muscles and significantly overexpressed in Czech Large White pigs compared with wild boars (14.5- and 11.6-fold; p < .05). We identified 9 polymorphic sites in the genomic DNA of NREP. Six of these polymorphisms were in complete linkage disequilibrium, and therefore, only 4 loci were informative. The associations of the HF571253:g.103G>A, HF571253:g.134G>A, HF571253:g.179T>C and HF571253:g.402_409delT polymorphisms with backfat thickness, lean meat content and average daily gain were assessed in Czech Large White pigs. The GG genotypes HF571253:g.103G>A and HF571253:g.134G>A, the TT genotypes HF571253:g.179T>C and 67 HF571253:g.402_409delT genotypes had favourable effects on the studied traits. Our results indicate the possibility of utilizing the variability of the NREP gene in marker-assisted selection in order to improve meat production in pigs.
- Klíčová slova
- SNP, gene expression, meat production, pig, polymorphism,
- MeSH
- genotyp MeSH
- jednonukleotidový polymorfismus * MeSH
- kosterní svaly MeSH
- maso MeSH
- prasata genetika MeSH
- Sus scrofa * genetika MeSH
- vazebná nerovnováha MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH