Artificial neural networks Dotaz Zobrazit nápovědu
Introduction: Artificial neural networks are becoming an essential technology in data analysis, and their influence is starting to permeate the field of medicine. Experimental surgery has been a long-term subject of study of our lab; this is naturally reflected in our interest in other areas of modern technologies including artificial neural networks and their advancements. In the current issue, we would like to explore this aspect of technical progress. The main goal is to critically evaluate the strengths and weaknesses of artificial neural network technology concerning its use in clinical and experimental surgery. Methods: The article is focused on in-silico modeling, particularly on the potential of neural networks in terms of image data processing in medicine. The text briefly summarizes the historical development of deep learning neural networks and their basic principles. Furthermore, basic taxonomy tasks are presented. Finally, potential learning problems and possible solutions are also mentioned. Results: The article points out various possible uses of artificial neural networks in biological applications. Several biomedical applications of artificial neural networks are used to describe the division and principles of the most common tasks of machine learning and deep learning such as classification, detection, and segmentation. Conclusion: The application of artificial neural network methods in medicine and surgery offers a considerable potential; by learning directly from the data, they make it possible to avoid lengthy and subjective setting of parameters by an expert engineer. Nevertheless, the use of an unbalanced dataset can lead to unexpected, although traceable errors. The solution is to collect a dataset large enough to enable both learning and verification of proper functionality.
- Klíčová slova
- artificial neural network, dataset, deep learning, machine learning,
- MeSH
- lidé MeSH
- neuronové sítě * MeSH
- počítače MeSH
- počítačové zpracování obrazu metody MeSH
- strojové učení * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
This study presents an application of the self-organizing migrating algorithm (SOMA) to train artificial neural networks for skin segmentation tasks. We compare the performance of SOMA with popular gradient-based optimization methods such as ADAM and SGDM, as well as with another evolutionary algorithm, differential evolution (DE). Experiments are conducted on the skin dataset, which consists of 245,057 samples with skin and non-skin labels. The results show that the neural network trained by SOMA achieves the highest accuracy (93.18%), outperforming ADAM (84.87%), SGDM (84.79%), and DE (91.32%). The visual evaluation also reveals the SOMA-trained neural network's accurate and reliable segmentation capabilities in most cases. These findings highlight the potential of incorporating evolutionary optimization algorithms like SOMA into the training process of artificial neural networks, significantly improving performance in image segmentation tasks.
- Klíčová slova
- Artificial neural networks, Computer vision, Optimization algorithm, SOMA, Skin segmentation, Swarm intelligence,
- MeSH
- algoritmy * MeSH
- kůže * diagnostické zobrazování MeSH
- lidé MeSH
- neuronové sítě * MeSH
- počítačové zpracování obrazu metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Rapid development of computer technologies leads to the intensive automation of many different processes traditionally performed by human experts. One of the spheres characterized by the introduction of new high intelligence technologies substituting analysis performed by humans is sleep scoring. This refers to the classification task and can be solved - next to other classification methods - by use of artificial neural networks (ANN). ANNs are parallel adaptive systems suitable for solving of non-linear problems. Using ANN for automatic sleep scoring is especially promising because of new ANN learning algorithms allowing faster classification without decreasing the performance. Both appropriate preparation of training data as well as selection of the ANN model make it possible to perform effective and correct recognizing of relevant sleep stages. Such an approach is highly topical, taking into consideration the fact that there is no automatic scorer utilizing ANN technology available at present.
- MeSH
- elektroencefalografie metody MeSH
- lidé MeSH
- neuronové sítě * MeSH
- polysomnografie metody MeSH
- spánek fyziologie MeSH
- stadia spánku fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Spiking Neural Networks (SNNs) have been considered a potential competitor to Artificial Neural Networks (ANNs) due to their high biological plausibility and energy efficiency. However, the architecture design of SNN has not been well studied. Previous studies either use ANN architectures or directly search for SNN architectures under a highly constrained search space. In this paper, we aim to introduce much more complex connection topologies to SNNs to further exploit the potential of SNN architectures. To this end, we propose the topology-aware search space, which is the first search space that enables a more diverse and flexible design for both the spatial and temporal topology of the SNN architecture. Then, to efficiently obtain architecture from our search space, we propose the spatio-temporal topology sampling (STTS) algorithm. By leveraging the benefits of random sampling, STTS can yield powerful architecture without the need for an exhaustive search process, making it significantly more efficient than alternative search strategies. Extensive experiments on CIFAR-10, CIFAR-100, and ImageNet demonstrate the effectiveness of our method. Notably, we obtain 70.79% top-1 accuracy on ImageNet with only 4 time steps, 1.79% higher than the second best model. Our code is available under https://github.com/stiger1000/Random-Sampling-SNN.
- Klíčová slova
- Neural architecture search, Spiking neural networks,
- MeSH
- algoritmy * MeSH
- neuronové sítě * MeSH
- Publikační typ
- časopisecké články MeSH
The artificial neural networks (ANN) are very often applied in many areas of toxicology for the solving of complex problems, such as the prediction of chemical compound properties and quantitative structure-activity relationship. The aim of this contribution is to give the basic knowledge about conception of ANN, theirs division and finally, the typical application of ANN will be discussed. Due to the diversity of architectures and adaptation algorithms, the ANNs are used in the broad spectrum of applications from the environmental processes modeling, through the optimization to quantitative structure-activity relationship (QSAR) methods. In addition, especially ANNs with Kohonen learning are very effective classification tool. The ANNs are mostly applied in cases, where the commonly used methods does not work.
The presented paper compares forecast of drought indices based on two different models of artificial neural networks. The first model is based on feedforward multilayer perceptron, sANN, and the second one is the integrated neural network model, hANN. The analyzed drought indices are the standardized precipitation index (SPI) and the standardized precipitation evaporation index (SPEI) and were derived for the period of 1948-2002 on two US catchments. The meteorological and hydrological data were obtained from MOPEX experiment. The training of both neural network models was made by the adaptive version of differential evolution, JADE. The comparison of models was based on six model performance measures. The results of drought indices forecast, explained by the values of four model performance indices, show that the integrated neural network model was superior to the feedforward multilayer perceptron with one hidden layer of neurons.
- MeSH
- koloběh vody MeSH
- lidé MeSH
- monitorování životního prostředí metody MeSH
- neuronové sítě * MeSH
- období sucha * MeSH
- předpověď MeSH
- teoretické modely * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Pathological pain subtypes can be classified as either neuropathic pain, caused by a somatosensory nervous system lesion or disease, or nociplastic pain, which develops without evidence of somatosensory system damage. Since there is no gold standard for the diagnosis of pathological pain subtypes, the proper classification of individual patients is currently an unmet challenge for clinicians. While the determination of specific biomarkers for each condition by current biochemical techniques is a complex task, the use of multimolecular techniques, such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), combined with artificial intelligence allows specific fingerprints for pathological pain-subtypes to be obtained, which may be useful for diagnosis. We analyzed whether the information provided by the mass spectra of serum samples of four experimental models of neuropathic and nociplastic pain combined with their functional pain outcomes could enable pathological pain subtype classification by artificial neural networks. As a result, a simple and innovative clinical decision support method has been developed that combines MALDI-TOF MS serum spectra and pain evaluation with its subsequent data analysis by artificial neural networks and allows the identification and classification of pathological pain subtypes in experimental models with a high level of specificity.
- Klíčová slova
- MALDI-TOF MS, artificial intelligence, diagnostics, fibromyalgia, mass spectrometry, neuropathic pain,
- MeSH
- bolest diagnóza MeSH
- lidé MeSH
- neuronové sítě * MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice metody MeSH
- umělá inteligence * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Spiking Neural Network (SNN) is a promising energy-efficient neural architecture when implemented on neuromorphic hardware. The Artificial Neural Network (ANN) to SNN conversion method, which is the most effective SNN training method, has successfully converted moderately deep ANNs to SNNs with satisfactory performance. However, this method requires a large number of time-steps, which hurts the energy efficiency of SNNs. How to effectively covert a very deep ANN (e.g., more than 100 layers) to an SNN with a small number of time-steps remains a difficult task. To tackle this challenge, this paper makes the first attempt to propose a novel error analysis framework that takes both the "quantization error" and the "deviation error" into account, which comes from the discretization of SNN dynamicsthe neuron's coding scheme and the inconstant input currents at intermediate layers, respectively. Particularly, our theories reveal that the "deviation error" depends on both the spike threshold and the input variance. Based on our theoretical analysis, we further propose the Threshold Tuning and Residual Block Restructuring (TTRBR) method that can convert very deep ANNs (>100 layers) to SNNs with negligible accuracy degradation while requiring only a small number of time-steps. With very deep networks, our TTRBR method achieves state-of-the-art (SOTA) performance on the CIFAR-10, CIFAR-100, and ImageNet classification tasks.
- Klíčová slova
- ANN-to-SNN conversion, Conversion error analysis, Spiking neural networks,
- MeSH
- neuronové sítě * MeSH
- počítače * MeSH
- Publikační typ
- časopisecké články MeSH
In this work the advantages of using artificial neural networks (ANNs) combined with experimental design (ED) to optimize the separation of amino acids enantiomers, with alpha-cyclodextrin as chiral selector, were demonstrated. The results obtained with the ED-ANN approach were compared with those of either the partial least-squares (PLS) method or the response surface methodology where experimental design and the regression equation were used. The ANN approach is quite general, no explicit model is needed, and the amount of experimental work can be decreased considerably.
- MeSH
- aminokyseliny analýza MeSH
- elektroforéza kapilární MeSH
- neuronové sítě * MeSH
- stereoizomerie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminokyseliny MeSH
This paper describes an ongoing project that has the aim to develop a low cost application to replace a computer mouse for people with physical impairment. The application is based on an eye tracking algorithm and assumes that the camera and the head position are fixed. Color tracking and template matching methods are used for pupil detection. Calibration is provided by neural networks as well as by parametric interpolation methods. Neural networks use back-propagation for learning and bipolar sigmoid function is chosen as the activation function. The user's eye is scanned with a simple web camera with backlight compensation which is attached to a head fixation device. Neural networks significantly outperform parametric interpolation techniques: 1) the calibration procedure is faster as they require less calibration marks and 2) cursor control is more precise. The system in its current stage of development is able to distinguish regions at least on the level of desktop icons. The main limitation of the proposed method is the lack of head-pose invariance and its relative sensitivity to illumination (especially to incidental pupil reflections).
- MeSH
- fotografování metody MeSH
- interpretace obrazu počítačem metody MeSH
- lidé MeSH
- mladý dospělý MeSH
- neuronové sítě * MeSH
- pohyby očí fyziologie MeSH
- retina anatomie a histologie fyziologie MeSH
- retinoskopie metody MeSH
- rozpoznávání automatizované metody MeSH
- senzitivita a specificita MeSH
- uživatelské rozhraní počítače * MeSH
- Check Tag
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH