Computational fluid and particle dynamics
Dotaz
Zobrazit nápovědu
BACKGROUND AND OBJECTIVE: Drug inhalation is generally accepted as the preferred administration method for treating respiratory diseases. To achieve effective inhaled drug delivery for an individual, it is necessary to use an interdisciplinary approach that can cope with inter-individual differences. The paper aims to present an individualised pulmonary drug deposition model based on Computational Fluid and Particle Dynamics simulations within a time frame acceptable for clinical use. METHODS: We propose a model that can analyse the inhaled drug delivery efficiency based on the patient's airway geometry as well as breathing pattern, which has the potential to also serve as a tool for a sub-regional diagnosis of respiratory diseases. The particle properties and size distribution are taken for the case of drug inhalation by using nebulisers, as they are independent of the patient's breathing pattern. Finally, the inhaled drug doses that reach the deep airways of different lobe regions of the patient are studied. RESULTS: The numerical accuracy of the proposed model is verified by comparison with experimental results. The difference in total drug deposition fractions between the simulation and experimental results is smaller than 4.44% and 1.43% for flow rates of 60 l/min and 15 l/min, respectively. A case study involving a COVID-19 patient is conducted to illustrate the potential clinical use of the model. The study analyses the drug deposition fractions in relation to the breathing pattern, aerosol size distribution, and different lobe regions. CONCLUSIONS: The entire process of the proposed model can be completed within 48 h, allowing an evaluation of the deposition of the inhaled drug in an individual patient's lung within a time frame acceptable for clinical use. Achieving a 48-hour time window for a single evaluation of patient-specific drug delivery enables the physician to monitor the patient's changing conditions and potentially adjust the drug administration accordingly. Furthermore, we show that the proposed methodology also offers a possibility to be extended to a detection approach for some respiratory diseases.
- Klíčová slova
- Computational fluid and particle dynamics, Drug deposition, Individualised approach, Inhaled drug delivery, Respiratory airway,
- MeSH
- aerosoly MeSH
- aplikace inhalační MeSH
- COVID-19 MeSH
- farmakoterapie COVID-19 MeSH
- hydrodynamika MeSH
- lékové transportní systémy MeSH
- lidé MeSH
- nebulizátory a vaporizátory * MeSH
- plíce metabolismus diagnostické zobrazování MeSH
- počítačová simulace * MeSH
- SARS-CoV-2 MeSH
- velikost částic MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aerosoly MeSH
The numerical simulation of inhaled aerosols in medical research starts to play a crucial role in understanding local deposition within the respiratory tract, a feat often unattainable experimentally. Research on children is particularly challenging due to the limited availability of in vivo data and the inherent morphological intricacies. CFD solvers based on Finite Volume Methods (FVM) have been widely employed to solve the flow field in such studies. Recently, Lattice Boltzmann Methods (LBM), a mesoscopic approach, have gained prominence, especially for their scalability on High-Performance Computers. This study endeavours to compare the effectiveness of LBM and FVM in simulating particulate flows within a child's respiratory tract, supporting research related to particle deposition and medication delivery using LBM. Considering a 5-year-old child's airway model at a steady inspiratory flow, the results are compared with in vitro experiments. Notably, both LBM and FVM exhibit favourable agreement with experimental data for the mean velocity field and the turbulence intensity. For particle deposition, both numerical methods yield comparable results, aligning well with in vitro experiments across a particle size range of 0.1-20 µm. Discrepancies are identified in the upper airways and trachea, indicating a lower deposition fraction than in the experiment. Nonetheless, both LBM and FVM offer invaluable insights into particle behaviour for different sizes, which are not easily achievable experimentally. In terms of practical implications, the findings of this study hold significance for respiratory medicine and drug delivery systems - potential health impacts, targeted drug delivery strategies or optimisation of respiratory therapies.
- Klíčová slova
- Child airways, Finite Volume Method, In vitro measurement, Lattice Boltzmann Method, Particle deposition,
- MeSH
- aerosoly MeSH
- hydrodynamika * MeSH
- lidé MeSH
- počítačová simulace MeSH
- předškolní dítě MeSH
- trachea * anatomie a histologie MeSH
- velikost částic MeSH
- Check Tag
- lidé MeSH
- předškolní dítě MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aerosoly MeSH
Needle-shaped crystals are a common occurrence in many pharmaceutical and fine chemicals processes. Even if the particle size distribution (PSD) obtained in a crystallization step can be controlled by the crystal growth kinetics and hydrodynamic conditions, further fluid-solid separation steps such as filtration, filter washing, drying, and subsequent solids handling can often lead to uncontrolled changes in the PSD due to breakage. In this contribution we present a combined computational and experimental methodology for determining the breakage kernel and the daughter distribution functions of needle-shaped crystals, and for population balance modeling of their breakage. A discrete element model (DEM) of needle-shaped particle breakage was first used in order to find out the appropriate types of the breakage kernel and the daughter distribution functions. A population balance model of breakage was then formulated and used in conjunction with experimental data in order to determine the material-specific parameters appearing in the breakage functions. Quantitative agreement between simulation and experiment has been obtained.
- MeSH
- chemické modely * MeSH
- filtrace MeSH
- hydrodynamika MeSH
- krystalizace MeSH
- léčivé přípravky chemie MeSH
- počítačová simulace * MeSH
- velikost částic MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- léčivé přípravky MeSH
Regional deposition effects are important in the pulmonary delivery of drugs intended for the topical treatment of respiratory ailments. They also play a critical role in the systemic delivery of drugs with limited lung bioavailability. In recent years, significant improvements in the quality of pulmonary imaging have taken place, however the resolution of current imaging modalities remains inadequate for quantifying regional deposition. Computational Fluid-Particle Dynamics (CFPD) can fill this gap by providing detailed information about regional deposition in the extrathoracic and conducting airways. It is therefore not surprising that the last 15years have seen an exponential growth in the application of CFPD methods in this area. Survey of the recent literature however, reveals a wide variability in the range of modelling approaches used and in the assumptions made about important physical processes taking place during aerosol inhalation. The purpose of this work is to provide a concise critical review of the computational approaches used to date, and to present a benchmark case for validation of future studies in the upper airways. In the spirit of providing the wider community with a reference for quality assurance of CFPD studies, in vitro deposition measurements have been conducted in a human-based model of the upper airways, and several groups within MP1404 SimInhale have computed the same case using a variety of simulation and discretization approaches. Here, we report the results of this collaborative effort and provide a critical discussion of the performance of the various simulation methods. The benchmark case, in vitro deposition data and in silico results will be published online and made available to the wider community. Particle image velocimetry measurements of the flow, as well as additional numerical results from the community, will be appended to the online database as they become available in the future.
- Klíčová slova
- Benchmark case, Computational fluid particle dynamics, Inhaled drug delivery, Regional deposition, Respiratory airways,
- MeSH
- absorpce v dýchacích cestách MeSH
- aerosoly chemie MeSH
- aplikace inhalační MeSH
- benchmarking metody MeSH
- biologické modely MeSH
- farmaceutická chemie metody MeSH
- hydrodynamika MeSH
- laryngální masky * MeSH
- lékové transportní systémy metody MeSH
- lidé MeSH
- nebulizátory a vaporizátory MeSH
- permeabilita MeSH
- plíce účinky léků MeSH
- počítačová simulace * MeSH
- prášky, zásypy, pudry chemie MeSH
- reologie MeSH
- velikost částic MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- aerosoly MeSH
- prášky, zásypy, pudry MeSH
We present the second part of a two-part paper series intended to address a gap in computational capability for coarse-grain particle modeling and simulation, namely, the simulation of phenomena in which diffusion via mass transfer is a contributing mechanism. In part 1, we presented a formulation of a dissipative particle dynamics method to simulate interparticle mass transfer, termed generalized energy-conserving dissipative particle dynamics with mass transfer (GenDPDE-M). In the GenDPDE-M method, the mass of each mesoparticle remains constant following the interparticle mass exchange. In part 2 of this series, further verification and demonstrations of the GenDPDE-M method are presented for mesoparticles with embedded binary mixtures using the ideal gas (IG) and van der Waals (vdW) equation-of-state (EoS). The targeted readership of part 2 is toward practitioners, where applications and practical considerations for implementing the GenDPDE-M method are presented and discussed, including a numerical discretisztion algorithm for the equations-of-motion. The GenDPDE-M method is verified by reproducing the particle distributions predicted by Monte Carlo simulations for the IG and vdW fluids, along with several demonstrations under both equilibrium and non-equilibrium conditions. GenDPDE-M can be generally applied to multi-component mixtures and to other fundamental EoS, such as the Lennard-Jones or Exponential-6 models, as well as to more advanced EoS models such as Statistical Associating Fluid Theory.
- Publikační typ
- časopisecké články MeSH
Recent developments in the prediction of local aerosol deposition in human lungs are driven by the fast development of computational simulations. Although such simulations provide results in unbeatable resolution, significant differences among distinct methods of calculation emphasize the need for highly precise experimental data in order to specify boundary conditions and for validation purposes. This paper reviews and critically evaluates available methods for the measurement of single and disperse two-phase flows for the study of respiratory airflow and deposition of inhaled particles, performed both in vivo and in replicas of airways. Limitations and possibilities associated with the experimental methods are discussed and aspects of the computational calculations that can be validated are indicated. The review classifies the methods into following categories: 1) point-wise and planar methods for velocimetry in the airways, 2) classic methods for the measurement of the regional distribution of inhaled particles, 3) standard medical imaging methods applicable to the measurement of the regional aerosol distribution and 4) emerging and nonconventional methods. All methods are described, applications in human airways studies are illustrated, and recommendations for the most useful applications of each method are given.
- Klíčová slova
- Aerosol deposition, CFD validation, Computational fluid particle dynamics, Experimental methods, Flow measurement techniques, Gas–liquid two-phase flow, Human airways, Lungs, Medical imaging, Velocimetry techniques,
- MeSH
- absorpce v dýchacích cestách MeSH
- aerosoly chemie MeSH
- aplikace inhalační MeSH
- biologické modely MeSH
- farmaceutická chemie metody MeSH
- hydrodynamika MeSH
- laryngální masky * MeSH
- lékové transportní systémy metody MeSH
- lidé MeSH
- nebulizátory a vaporizátory MeSH
- permeabilita MeSH
- plíce účinky léků MeSH
- počítačová simulace * MeSH
- prášky, zásypy, pudry chemie MeSH
- velikost částic MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- aerosoly MeSH
- prášky, zásypy, pudry MeSH
Dissipative particle dynamics (DPD) is a widespread computational tool to simulate the behavior of soft matter and liquids in and out of equilibrium. Although there are many applications in which the effect of temperature is relevant, most of the DPD studies have been carried out at a fixed system temperature. Therefore, this work investigates how to incorporate the effect of system temperature variation within the DPD model to capture realistic temperature-dependent system properties. In particular, this work focuses on the relationship between temperature and transport properties, and therefore, an extended DPD model for transport properties prediction is employed. Transport properties, unlike the equilibrium properties, are often overlooked despite their significant influence on the flow dynamics of non-isothermal mesoscopic systems. Moreover, before simulating the response of the system induced by a temperature change, it is important to first estimate transport properties at a certain temperature. Thus here, the same fluid is simulated across different temperature conditions using isothermal DPD with the aim to identify a temperature-dependent parametrization methodology, capable of ensuring the correctness of both equilibrium and dynamical properties. Liquid water is used as a model system for these analyses. This work proposes a temperature-dependent form of the extended DPD model where both conservative and non-conservative interaction parameters incorporate the variation of the temperature. The predictions provided by our simulations are in excellent agreement with experimental data.
- Publikační typ
- časopisecké články MeSH
The inhalation route has a substantial influence on the fate of inhaled particles. An outbreak of infectious diseases such as COVID-19, influenza or tuberculosis depends on the site of deposition of the inhaled pathogens. But the knowledge of respiratory deposition is important also for occupational safety or targeted delivery of inhaled pharmaceuticals. Simulations utilizing computational fluid dynamics are becoming available to a wide spectrum of users and they can undoubtedly bring detailed predictions of regional deposition of particles. However, if those simulations are to be trusted, they must be validated by experimental data. This article presents simulations and experiments performed on a geometry of airways which is available to other users and thus those results can be used for intercomparison between different research groups. In particular, three hypotheses were tested. First: Oral breathing and combined breathing are equivalent in terms of particle deposition in TB airways, as the pressure resistance of the nasal cavity is so high that the inhaled aerosol flows mostly through the oral cavity in both cases. Second: The influence of the inhalation route (nasal, oral or combined) on the regional distribution of the deposited particles downstream of the trachea is negligible. Third: Simulations can accurately and credibly predict deposition hotspots. The maximum spatial resolution of predicted deposition achievable by current methods was searched for. The simulations were performed using large-eddy simulation, the flow measurements were done by laser Doppler anemometry and the deposition has been measured by positron emission tomography in a realistic replica of human airways. Limitations and sources of uncertainties of the experimental methods were identified. The results confirmed that the high-pressure resistance of the nasal cavity leads to practically identical velocity profiles, even above the glottis for the mouth, and combined mouth and nose breathing. The distribution of deposited particles downstream of the trachea was not influenced by the inhalation route. The carina of the first bifurcation was not among the main deposition hotspots regardless of the inhalation route or flow rate. On the other hand, the deposition hotspots were identified by both CFD and experiments in the second bifurcation in both lungs, and to a lesser extent also in both the third bifurcations in the left lung.
- Klíčová slova
- Airways, Computational fluid mechanics, Deposition hotspots, Flow, Laser Doppler anemometry, Lungs, Numerical simulations, Particle deposition, Positron emission tomography,
- Publikační typ
- časopisecké články MeSH
The rheological behavior of particle suspensions is a challenging problem because its description depends on the interaction of two phases with different material properties. This interaction can lead to complex behavior because of acting forces at the solid-liquid interface such as lubrication. The goal of this work is to propose a method for the modeling of fluids viscoelasticity in the presence of spherical particles including fluid-particle interactions. To accomplish this, we employed a simplified approach using the discrete element method (DEM) coupled with computational fluid dynamics (CFD) to simulate a suspension of particles under oscillatory flow in a three-dimensional computational domain. The choice of DEM provides versatility to customize the constitutive relations of particle-particle and fluid-particle interactions. Particularly, we focused on studying the effect of solid-liquid interaction (lubrication forces) on the viscoelasticity of the particulate system. To analyze the effect of this interfacial force, we simplified the particle-particle interaction to a nonadhesive elastic contact, thus avoiding aggregation of the particles. The work consists of two parts: the first one is a pure CFD model of the oscillatory motion applied to a Newtonian fluid (without particles), and the second is an extended version including DEM to simulate the viscoelasticity of the particle suspension. In this way, we can isolate the effect of fluid inertia on the viscoelasticity of the particulate system. The obtained results show that the model is capable to reproduce qualitatively the increase of the storage modulus as a function of the solid volume fraction and the dependence of dynamic moduli on the applied shear strain. The presented methodology provides a new insight into modeling of rheology by customizing interactions at the particle level based purely on first-principles with model parameters including solely material properties and physically identifiable quantities.
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Understanding the risk factors leading to intracranial aneurysm (IA) rupture have still not been fully clarified. They are vital for proper medical guidance of patients harboring unruptured IAs. Clarifying the hemodynamics associated with the point of rupture could help could provide useful information about some of the risk factors. Thus far, few studies have studied this issue with often diverging conclusions. METHODS: We identified a point of rupture in patients operated for an IAs during surgery, using a combination of preoperative computed tomography (CT) and computed tomography angiography (CTA). Hemodynamic parameters were calculated both for the aneurysm sac as a whole and the point of rupture. In two cases, the results of CFD were compared with those of the experiment using particle image velocimetry (PIV). RESULTS: We were able to identify 6 aneurysms with a well-demarcated point of rupture. In four aneurysms, the rupture point was near the vortex with low wall shear stress (WSS) and high oscillatory shear index (OSI). In one case, the rupture point was in the flow jet with high WSS. In the last case, the rupture point was in the significant bleb and no specific hemodynamic parameters were found. The CFD results were verified in the PIV part of the study. CONCLUSION: Our study shows that different hemodynamic scenarios are associated with the site of IA rupture. The numerical simulations were confirmed by laboratory models. This study further supports the hypothesis that various pathological pathways may lead to aneurysm wall damage resulting in its rupture.
- Klíčová slova
- computational fluid dynamics, intracranial aneurysm, particle image velocimetry (PIV), rupture, wall shear stress (WSS),
- Publikační typ
- časopisecké články MeSH