Lab-On-Valve and Lab-In-Syringe
Dotaz
Zobrazit nápovědu
We report on the hyphenation of the modern flow techniques Lab-In-Syringe and Lab-On-Valve for automated sample preparation coupled online with high-performance liquid chromatography. Adopting the bead injection concept on the Lab-On-Valve platform, the on-demand, renewable, solid-phase extraction of five nonsteroidal anti-inflammatory drugs, namely ketoprofen, naproxen, flurbiprofen, diclofenac, and ibuprofen, was carried out as a proof-of-concept. In-syringe mixing of the sample with buffer and standards allowed straightforward pre-load sample modification for the preconcentration of large sample volumes. Packing of ca. 4.4 mg microSPE columns from Oasis HLB® sorbent slurry was performed for each sample analysis using a simple microcolumn adapted to the Lab-On-Valve manifold to achieve low backpressure during loading. Eluted analytes were injected into online coupled HPLC with subsequent separation on a Symmetry C18 column in isocratic mode. The optimized method was highly reproducible, with RSD values of 3.2% to 7.6% on 20 µg L-1 level. Linearity was confirmed up to 200 µg L-1 and LOD values were between 0.06 and 1.98 µg L-1. Recovery factors between 91 and 109% were obtained in the analysis of spiked surface water samples.
- Klíčová slova
- Lab-In-Syringe, Lab-On-Valve, bead injection, high-performance liquid chromatography, nonsteroidal anti-inflammatory drugs, online coupling, water analysis,
- MeSH
- antiflogistika nesteroidní analýza MeSH
- extrakce na pevné fázi * MeSH
- povrchové vlastnosti MeSH
- voda chemie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiflogistika nesteroidní MeSH
- voda MeSH
Online coupling of Lab-In-Syringe automated headspace extraction to gas chromatography has been studied. The developed methodology was successfully applied to surface water analysis using benzene, toluene, ethylbenzene, and xylenes as model analytes. The extraction system consisted of an automatic syringe pump with a 5 mL syringe into which all solutions and air for headspace formation were aspirated. The syringe piston featured a longitudinal channel, which allowed connecting the syringe void directly to a gas chromatograph with flame ionization detector via a transfer capillary. Gas injection was achieved via opening a computer-controlled pinch valve and compressing the headspace, upon which separation was initialized. Extractions were performed at room temperature; yet sensitivity comparable to previous work was obtained by high headspace to sample ratio VHS/VSample of 1.6:1 and injection of about 77% of the headspace. Assistance by in-syringe magnetic stirring yielded an about threefold increase in extraction efficiency. Interferences were compensated by using chlorobenzene as an internal standard. Syringe cleaning and extraction lasting over 10 min was carried out in parallel to the chromatographic run enabling a time of analysis of <19 min. Excellent peak area repeatabilities with RSD of <4% when omitting and <2% RSD when using internal standard corrections on 100 μg L-1 level were achieved. An average recovery of 97.7% and limit of detection of 1-2 μg L-1 were obtained in analyses of surface water.
- Klíčová slova
- Btex, Gas chromatography – flame ionization detection, Headspace extraction, Magnetic-stirring Lab-In-Syringe, On-line coupling,
- MeSH
- automatizace MeSH
- benzen analýza izolace a purifikace MeSH
- benzenové deriváty analýza izolace a purifikace MeSH
- limita detekce MeSH
- mikroextrakce na pevné fázi MeSH
- plamínková ionizace metody MeSH
- teplota MeSH
- toluen analýza izolace a purifikace MeSH
- voda chemie MeSH
- xyleny analýza izolace a purifikace MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- benzen MeSH
- benzenové deriváty MeSH
- ethylbenzene MeSH Prohlížeč
- toluen MeSH
- voda MeSH
- xyleny MeSH
Lab-In-Syringe direct immersion single drop microextraction is proposed as an automated sample pretreatment methodology and coupled online to HPLC with fluorescence detection for the determination of fluoroquinolones in environmental waters. For the first time, a drop of a natural deep eutectic solvent (NADES), synthesized from hexanoic acid and thymol, has been used as an extractant in automated single-drop microextraction. The extraction procedure was carried out within the 5 mL void of an automatic syringe pump. A 9-position head valve served the aspiration of all required solutions, air, waste disposal, and hyphenation with the HPLC instrument. Sample mixing during extraction was done by a magnetic stirring bar placed inside the syringe. Only 60 μL of NADES were required omitting toxic classical solvents and improving the greenness of the proposed methodology. By direct injection, linear working ranges between 0.1 and 5 μg L-1 were achieved for all fluoroquinolones. The limit of quantification values and enrichment factors ranged from 20 ng L-1 to 30 ng L-1 and 35 to 45, respectively. Accuracies obtained from the analysis of spiked surface water and wastewater treatment plant effluent analysis at two concentration levels (0.5 and 4 μg L-1) ranged from 84.6% to 119.7%, with RSD values typically <3%.
- Klíčová slova
- Automation of sample preparation, Directly immersed single drop microextraction, Fluoroquinolone antibiotics, Lab-in-syringe, Natural deep eutectic solvent, Online coupling to HPLC,
- MeSH
- automatizace MeSH
- fluorochinolony * MeSH
- hluboce eutektická rozpouštědla MeSH
- injekční stříkačky MeSH
- limita detekce MeSH
- mikroextrakce kapalné fáze * metody MeSH
- ponoření MeSH
- rozpouštědla chemie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fluorochinolony * MeSH
- hluboce eutektická rozpouštědla MeSH
- rozpouštědla MeSH
This article aims to provide an overview on the transition from earlier laboratory automation using analytical flow approaches toward today's applications of flow methodologies, recent developments, and future trends. The article is directed to flow practitioners while serving as a valuable reference to newcomers in the field in providing insight into flow techniques and conceptual differences in operation across the distinct flow generations. In the focus are the recently developed and complementary techniques Lab-On-Valve and Lab-In-Syringe. In the following, a brief comparison of the different application niches and contributions of flow techniques to past and modern analytical chemistry is given, including (i) the development of sample pretreatment approaches, (ii) the potential applicability for in-situ/on-site monitoring of environmental compartments or technical processes, (iii) the ability of miniaturization of laboratory chemistry, (iv) the unique advantages for implementation of kinetic assays, and finally (v) the beneficial online coupling with scanning or separation analytical techniques. We also give a critical comparison to alternative approaches for automation based on autosamplers and robotic systems. Finally, an outlook on future applications and developments including 3D prototyping and specific needs for further improvements is given. Graphical abstract ᅟ.
- Klíčová slova
- Automation and miniaturization, Flow techniques, Hyphenation, Lab-On-Valve and Lab-In-Syringe, Monitoring and surveillance, Sample pretreatment,
- Publikační typ
- časopisecké články MeSH
We present the first automated synthesis of magnetic immunosorbents (MIS) using a lab-in-syringe (LIS) platform, facilitating antibody bioconjugation to magnetic beads via carbodiimide-mediated covalent binding. This approach is an efficient, reproducible alternative to traditional manual methods, minimizing pipetting steps, vortexing, and incubation with a reduced handling bias. Utilizing a 1 mL syringe pump with a 12-port multiposition valve and an internal magnetic stir bar enables precise mixing, bead dispersion, and magnetic capture for consistent bioconjugate synthesis. The LIS platform achieved a 99.6% bead recovery with 0.4 mg of MIS (1 μm in diameter), outperforming the 83% recovery of manual techniques, and maintained an 83% recovery at reduced scales of 0.2 mg, surpassing manual yields of 76%. As a proof-of-concept, MIS conjugated with anti-SARS-CoV2 antibodies (6 μg/400 mg beads) were synthesized and validated for viral RNA isolation from COVID-19-positive samples, demonstrating high immunocapture efficiency comparable to manual methods but with significantly reduced time and labor requirements. This automated synthesis of antibody-MIS enables the scalable, reproducible production of bioconjugated materials, supporting advanced applications in diagnostic assays, therapeutic delivery, and microfluidic integrations. The LIS approach thus enhances the scope of biomolecular conjugate synthesis, offering streamlined workflows that are suited for downstream analytical and bioanalytical applications. LIS is a versatile, automated system for preparing MIS that researchers can adapt for various targets, particularly when commercial products are unavailable, are prohibitively expensive, or require custom carriers.
- Publikační typ
- časopisecké články MeSH
We report on a Lab-On-Valve (LOV) configuration for analyte preconcentration from milliliter sample volumes using confluent mixing in the holding coil for in-line addition of loading buffer. The system was applied to the spectrophotometric determination of iron(II) in acidified seawater using 1,10-phenanthroline as color reagent. A cellulose-based chelating sorbent containing 8-hydroxyquinoline was used for the first time in LOV and excellent retention behavior and loading capacity were found. The flow system employs a syringe pump for handling all solutions (sorbent suspension, loading buffer, water, eluent, and color reagent) and a peristaltic pump for sample propulsion and includes a fit-for-purpose 14 cm long detection glass flow cell and a bubble trap for in-line carrier degasification. Advantage was taken of the LOV flow-through port to keep the eluted analytes for re-aspiration for subsequent chromogenic reaction. In effect, a universal analyzer configuration and preconcentration procedure was developed, which is combinable with other analytes, sorbents, and reagents. Among the studied parameters were the compositions, pH, volumes, and flow rates of loading buffer, eluent, and color reagent, as well as the microcolumn size, repeatability, and system stability. Reproducibility of 4.1% RSD over the entire working range, a LOD of down to 5 nmol L(-1), sampling frequency of 12h(-1), and linearity up to 1 µmol L(-1) for 3.3 mL of sample were obtained and applicability to real samples was demonstrated. It was proven that both Fe(III) and Fe(II) were retained and yielded similar recovery and sensitivity values. The method was applied to coastal seawater samples and spiking experiments yielded recovery values close to 100%.
- Klíčová slova
- 1, 10-Phenanthroline, 8-Hydroquinoline-modified cellulose sorbent, Bead injection, Iron determination in seawater, Lab-on-Valve, Long-path detection cell,
- MeSH
- barva MeSH
- celulosa chemie MeSH
- chelátory chemie MeSH
- extrakce na pevné fázi MeSH
- fenantroliny chemie MeSH
- koncentrace vodíkových iontů MeSH
- limita detekce * MeSH
- metody pro přípravu analytických vzorků přístrojové vybavení metody MeSH
- mořská voda chemie MeSH
- oxychinolin chemie MeSH
- pufry MeSH
- reprodukovatelnost výsledků MeSH
- železo analýza chemie izolace a purifikace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1,10-phenanthroline MeSH Prohlížeč
- celulosa MeSH
- chelátory MeSH
- fenantroliny MeSH
- oxychinolin MeSH
- pufry MeSH
- železo MeSH
Determination of salbutamol using sequential injection analysis (SIA) with chemiluminescence and fluorescence detection has been devised. The chemiluminescence signal was emitted during the oxidation of salbutamol by potassium permanganate in sulfuric acid medium. Sodium polyphosphate was used as chemiluminescence enhancer. The fluorescence signal (excitation wavelength 230 nm) was also measured in sulfuric acid medium. Both detection techniques were compared with respect to the application of the methods to the determination of salbutamol in biological materials. The sample pre-treatment takes place directly in the SIA system, when salbutamol is adsorbed on the solid-phase (Baker-carboxylic acid) microcolumn integrated into the system. Sulfuric acid serves both as the reagent and the eluent. The lab-made SIA system consisted of a 2.5-mL Cavro syringe pump, ten-port Vici Valco selection valve and Spectra-Physics FS 970 fluorescence detector, which was lab-modified for chemiluminescence detection. The system was controlled by a PC using originally compiled LabVIEW-supported software. Concentrations, volumes of reagents and flow rates were optimised by a simplex method. Salbutamol was determined in the linear range 0.05-10 microg mL(-1) (RSD 1.53%), with the detection limit (3 sigma) 0.03 microg mL(-1) and sample throughput of 42 samples per hour with chemiluminescence detection in standard solutions. The fluorescence detection enabled the determination of salbutamol in standard solutions in the linear range 0.5-100 microg mL(-1) (RSD 2.69%), with the detection limit 0.2 microg mL(-1) and sample throughput of 24 h(-1). The proposed methods were applied to the determination of salbutamol in human serum and urine. However, serum is a very complicated matrix and the SIA-SPE analysis did not provide satisfactory results. It was possible to determine salbutamol in human urine using this technique. Better recovery was achieved with fluorescence detection.
- MeSH
- agonisté adrenergních beta-receptorů analýza krev moč MeSH
- albuterol analýza krev moč MeSH
- fluorescence MeSH
- indikátory a reagencie MeSH
- kalibrace MeSH
- lidé MeSH
- luminiscenční měření MeSH
- počítačové zpracování signálu * MeSH
- průtoková injekční analýza MeSH
- referenční hodnoty MeSH
- referenční standardy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- agonisté adrenergních beta-receptorů MeSH
- albuterol MeSH
- indikátory a reagencie MeSH
A proof of concept study involving the online coupling of automatic dispersive liquid-liquid microextraction (DLLME) to inductively coupled plasma optical emission spectrometry (ICP OES) with direct introduction and analysis of the organic extract is herein reported for the first time. The flow-based analyzer features a lab-in-syringe (LIS) setup with an integrated stirring system, a Meinhard nebulizer in combination with a heated single-pass spray chamber, and a rotary injection valve, used as an online interface between the microextraction system and the detection instrument. Air-segmented flow was used for delivery of a fraction of the nonwater miscible extraction phase, 12 μL of xylene, to the nebulizer. All sample preparative steps including magnetic stirring assisted DLLME were carried out inside the syringe void volume as a size-adaptable yet sealed mixing and extraction chamber. Determination of trace level concentrations of cadmium, copper, lead, and silver as model analytes has been demonstrated by microextraction as diethyldithiophosphate (DDTP) complexes. The automatic LIS-DLLME method features quantitative metal extraction, even in troublesome sample matrixes, such as seawater, salt, and fruit juices, with relative recoveries within the range of 94-103%, 93-100%, and 92-99%, respectively. Furthermore, no statistically significant differences at the 0.05 significance level were found between concentration values experimentally obtained and the certified values of two serum standard reference materials.
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH