Least Mean Squares (LMS) algorithm
Dotaz
Zobrazit nápovědu
This publication describes an innovative approach to voice control of operational and technical functions in a real Smart Home (SH) environment, where, for voice control within SH, it is necessary to provide robust technological systems for building automation and for technology visualization, software for recognition of individual voice commands, and a robust system for additive noise canceling. The KNX technology for building automation is used and described in the article. The LabVIEW SW tool is used for visualization, data connectivity to the speech recognizer, connection to the sound card, and the actual mathematical calculations within additive noise canceling. For the actual recognition of commands, the SW tool for recognition within the Microsoft Windows OS is used. In the article, the least mean squares algorithm (LMS) and independent component analysis (ICA) are used for additive noise canceling from the speech signal measured in a real SH environment. Within the proposed experiments, the success rate of voice command recognition for different types of additive interference (television, vacuum cleaner, washing machine, dishwasher, and fan) in the real SH environment was compared. The recognition success rate was greater than 95% for the selected experiments.
- Klíčová slova
- LabVIEW, Smart Home (SH), automatic speech recognition, independent component analysis (ICA), least mean squares algorithm (LMS),
- Publikační typ
- časopisecké články MeSH
This paper is focused on the design, implementation and verification of a novel method for the optimization of the control parameters (such as step size μ and filter order N) of LMS and RLS adaptive filters used for noninvasive fetal monitoring. The optimization algorithm is driven by considering the ECG electrode positions on the maternal body surface in improving the performance of these adaptive filters. The main criterion for optimal parameter selection was the Signal-to-Noise Ratio (SNR). We conducted experiments using signals supplied by the latest version of our LabVIEW-Based Multi-Channel Non-Invasive Abdominal Maternal-Fetal Electrocardiogram Signal Generator, which provides the flexibility and capability of modeling the principal distribution of maternal/fetal ECGs in the human body. Our novel algorithm enabled us to find the optimal settings of the adaptive filters based on maternal surface ECG electrode placements. The experimental results further confirmed the theoretical assumption that the optimal settings of these adaptive filters are dependent on the ECG electrode positions on the maternal body, and therefore, we were able to achieve far better results than without the use of optimization. These improvements in turn could lead to a more accurate detection of fetal hypoxia. Consequently, our approach could offer the potential to be used in clinical practice to establish recommendations for standard electrode placement and find the optimal adaptive filter settings for extracting high quality fetal ECG signals for further processing. Ultimately, diagnostic-grade fetal ECG signals would ensure the reliable detection of fetal hypoxia.
- Klíčová slova
- Least Mean Squares (LMS) algorithm, Recursive Least Squares (RLS) algorithm, adaptive filtering, fetal ECG,
- MeSH
- algoritmy MeSH
- elektrody MeSH
- elektrokardiografie MeSH
- lidé MeSH
- monitorování plodu * MeSH
- počítačové zpracování signálu MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
This paper focuses on the design, realization, and verification of a novel phonocardiographic- based fiber-optic sensor and adaptive signal processing system for noninvasive continuous fetal heart rate (fHR) monitoring. Our proposed system utilizes two Mach-Zehnder interferometeric sensors. Based on the analysis of real measurement data, we developed a simplified dynamic model for the generation and distribution of heart sounds throughout the human body. Building on this signal model, we then designed, implemented, and verified our adaptive signal processing system by implementing two stochastic gradient-based algorithms: the Least Mean Square Algorithm (LMS), and the Normalized Least Mean Square (NLMS) Algorithm. With this system we were able to extract the fHR information from high quality fetal phonocardiograms (fPCGs), filtered from abdominal maternal phonocardiograms (mPCGs) by performing fPCG signal peak detection. Common signal processing methods such as linear filtering, signal subtraction, and others could not be used for this purpose as fPCG and mPCG signals share overlapping frequency spectra. The performance of the adaptive system was evaluated by using both qualitative (gynecological studies) and quantitative measures such as: Signal-to-Noise Ratio-SNR, Root Mean Square Error-RMSE, Sensitivity-S+, and Positive Predictive Value-PPV.
- Klíčová slova
- EMI-free, Least Mean Squares (LMS) algorithm, Normalized Least Mean Square (NLMS) algorithm, adaptive system, fetal heart rate (fHR), fetal heart sounds (fHS), fetal phonocardiography (fPCG), interferometer, maternal heart rate (mHR), maternal heart sounds (mHS),
- MeSH
- algoritmy MeSH
- lidé MeSH
- počítačové zpracování signálu MeSH
- poměr signál - šum MeSH
- srdeční frekvence plodu * MeSH
- srdeční ozvy MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
This paper is focused on the design, implementation and verification of a novel method for the optimization of the control parameters of different hybrid systems used for non-invasive fetal electrocardiogram (fECG) extraction. The tested hybrid systems consist of two different blocks, first for maternal component estimation and second, so-called adaptive block, for maternal component suppression by means of an adaptive algorithm (AA). Herein, we tested and optimized four different AAs: Adaptive Linear Neuron (ADALINE), Standard Least Mean Squares (LMS), Sign-Error LMS, Standard Recursive Least Squares (RLS), and Fast Transversal Filter (FTF). The main criterion for optimal parameter selection was the F1 parameter. We conducted experiments using real signals from publicly available databases and those acquired by our own measurements. Our optimization method enabled us to find the corresponding optimal settings for individual adaptive block of all tested hybrid systems which improves achieved results. These improvements in turn could lead to a more accurate fetal heart rate monitoring and detection of fetal hypoxia. Consequently, our approach could offer the potential to be used in clinical practice to find optimal adaptive filter settings for extracting high quality fetal ECG signals for further processing and analysis, opening new diagnostic possibilities of non-invasive fetal electrocardiography.
- MeSH
- algoritmy MeSH
- elektrokardiografie * metody MeSH
- lidé MeSH
- metoda nejmenších čtverců MeSH
- monitorování plodu metody MeSH
- plod fyziologie MeSH
- počítačové zpracování signálu * MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This study focuses on the design of a measuring system for monitoring the power quality within the SMART street lighting test polygon at university campuses with relation to testing an adaptive current control strategy for three-phase shunt active power filters. Unlike conventional street lighting, SMART elements are powered 24/7. Due to the electronic character of the power part of such mass appliances, there are increased problems with the power quality of the electric energy. Compared to the current concept of street lighting, there is a significant increase in the content of higher current harmonic components, which cause several problems in the distribution system. The test polygon contains 16 luminaires made by various manufacturers and mounted with various SMART components. Using the polygon control and monitoring system, dynamic load scenarios were selected. These scenarios tested the possibilities of different adaptive current control strategies for three-phase shunt active power filters to improve the power quality of electricity. This study focuses on three adaptive algorithms that respond to dynamic changes of current harmonics level in real-time. The possibility of active filter control was tested using FPGA, mainly due to the low latency of the filter control part.
This article presents a comprehensive system for testing and verifying shunt active power filter control methods. The aim of this experimental platform is to provide tools to a user to objectively compare the individual control methods. The functionality of the system was verified on a hardware platform using least mean squares and recursive least squares algorithms. In the experiments, an average relative suppression of the total harmonic distortion of 22% was achieved. This article describes the principle of the shunt active power filter, the used experimental platform of the controlled current injection source, its control system based on virtual instrumentation and control software and ends with experimental verification. The discussion of the paper outlines the extension of the experimental platform with the cRIO RTOS control system to reduce the latency of reference current generation and further planned research including motivation.
- Klíčová slova
- LabVIEW, Notch–LMS, Notch–RLS, SAPF, virtual instrumentation,
- Publikační typ
- časopisecké články MeSH
This paper focuses on a channel feed-forward software defined equalization (FSDE) of visible light communication (VLC) multistate quadrature amplitude modulation (M-QAM) based system, implemented in the LabVIEW programming environment. A highly modular platform is introduced; the whole experiment is simulated in software and then thoroughly explored and analyzed during practical measurements in the laboratory, simulating real-world situations. The whole platform is based on modified National Instruments software defined radios (NI SDR) and a commercially available Philips light source, often used in Czech government institutions. Three FSDE algorithms were tested: least mean squares (LMS), normalized least mean squares (NLMS), and QR decomposition based RLS (QR-RLS). Based on measurements, QR-RLS provides the best results, improving measured values by up to 10%. The experiments also show that the simulated results are very similar to real measurements, thus proving the validity of the chosen approach. The whole platform manages to improve measured data simply by making changes to the software side of the testing prototype.