Memory encoding
Dotaz
Zobrazit nápovědu
BACKGROUND: Treating memory and cognitive deficits requires knowledge about anatomical sites and neural activities to be targeted with particular therapies. Emerging technologies for local brain stimulation offer attractive therapeutic options but need to be applied to target specific neural activities, at distinct times, and in specific brain regions that are critical for memory formation. METHODS: The areas that are critical for successful encoding of verbal memory as well as the underlying neural activities were determined directly in the human brain with intracranial electrophysiological recordings in epilepsy patients. We recorded a broad range of spectral activities across the cortex of 135 patients as they memorised word lists for subsequent free recall. FINDINGS: The greatest differences in the spectral power between encoding subsequently recalled and forgotten words were found in low theta frequency (3-5 Hz) activities of the left anterior prefrontal cortex. This subsequent memory effect was proportionally greater in the lower frequency bands and in the more anterior cortical regions. We found the peak of this memory signal in a distinct part of the prefrontal cortex at the junction between the Broca's area and the frontal pole. The memory effect in this confined area was significantly higher (Tukey-Kramer test, p<0.05) than in other anatomically distinct areas. INTERPRETATION: Our results suggest a focal hotspot of human verbal memory encoding located in the higher-order processing region of the prefrontal cortex, which presents a prospective target for modulating cognitive functions in the human patients. The memory effect provides an electrophysiological biomarker of low frequency neural activities, at distinct times of memory encoding, and in one hotspot location in the human brain. FUNDING: Open-access datasets were originally collected as part of a BRAIN Initiative project called Restoring Active Memory (RAM) funded by the Defence Advanced Research Project Agency (DARPA). CT, ML, MTK and this research were supported from the First Team grant of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund.
- Klíčová slova
- Anterior prefrontal cortex, Frontal pole, Human verbal memory, Intracranial recordings, Memory encoding,
- MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mapování mozku MeSH
- mozek fyziologie MeSH
- paměť * fyziologie MeSH
- prefrontální mozková kůra * fyziologie MeSH
- rozpomínání fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Pupil responses are known to indicate brain processes involved in perception, attention and decision-making. They can provide an accessible biomarker of human memory performance and cognitive states in general. Here we investigated changes in the pupil size during encoding and recall of word lists. Consistent patterns in the pupil response were found across and within distinct phases of the free recall task. The pupil was most constricted in the initial fixation phase and was gradually more dilated through the subsequent encoding, distractor and recall phases of the task, as the word items were maintained in memory. Within the final recall phase, retrieving memory for individual words was associated with pupil dilation in absence of visual stimulation. Words that were successfully recalled showed significant differences in pupil response during their encoding compared to those that were forgotten - the pupil was more constricted before and more dilated after the onset of word presentation. Our results suggest pupil size as a potential biomarker for probing and modulation of memory processing.
- MeSH
- dospělí MeSH
- kognice fyziologie MeSH
- lidé MeSH
- mladý dospělý MeSH
- pupila fyziologie MeSH
- rozpomínání fyziologie MeSH
- světelná stimulace MeSH
- velikost orgánu fyziologie MeSH
- zdraví dobrovolníci pro lékařské studie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The objective is to study the involvement of the posterior medial cortex (PMC) in encoding and retrieval by visual and auditory memory processing. Intracerebral recordings were studied in two epilepsy-surgery candidates with depth electrodes implanted in the retrosplenial cingulate, precuneus, cuneus, lingual gyrus and hippocampus. We recorded the event-related potentials (ERP) evoked by visual and auditory memory encoding-retrieval tasks. In the hippocampus, ERP were elicited in the encoding and retrieval phases in the two modalities. In the PMC, ERP were recorded in both the encoding and the retrieval visual tasks; in the auditory modality, they were recorded in the retrieval task, but not in the encoding task. In conclusion, the PMC is modality dependent in memory processing. ERP is elicited by memory retrieval, but it is not elicited by auditory encoding memory processing in the PMC. The PMC appears to be involved not only in higher-order top-down cognitive activities but also in more basic, rather than bottom-up activities.
- MeSH
- akustická stimulace MeSH
- dospělí MeSH
- elektroencefalografie metody MeSH
- epilepsie patofyziologie MeSH
- implantované elektrody MeSH
- lidé MeSH
- mozek fyziologie MeSH
- paměť fyziologie MeSH
- počítačové zpracování signálu MeSH
- sluchové evokované potenciály fyziologie MeSH
- světelná stimulace MeSH
- zrakové evokované potenciály fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Processing of memory is supported by coordinated activity in a network of sensory, association, and motor brain regions. It remains a major challenge to determine where memory is encoded for later retrieval. Here, we used direct intracranial brain recordings from epilepsy patients performing free recall tasks to determine the temporal pattern and anatomical distribution of verbal memory encoding across the entire human cortex. High γ frequency activity (65-115 Hz) showed consistent power responses during encoding of subsequently recalled and forgotten words on a subset of electrodes localized in 16 distinct cortical areas activated in the tasks. More of the high γ power during word encoding, and less power before and after the word presentation, was characteristic of successful recall and observed across multiple brain regions. Latencies of the induced power changes and this subsequent memory effect (SME) between the recalled and forgotten words followed an anatomical sequence from visual to prefrontal cortical areas. Finally, the magnitude of the memory effect was unexpectedly found to be the largest in selected brain regions both at the top and at the bottom of the processing stream. These included the language processing areas of the prefrontal cortex and the early visual areas at the junction of the occipital and temporal lobes. Our results provide evidence for distributed encoding of verbal memory organized along a hierarchical posterior-to-anterior processing stream.
- Klíčová slova
- cognition, cortical mapping, electrocorticography, high-frequency oscillations, network oscillations,
- MeSH
- časové faktory MeSH
- elektrokortikografie MeSH
- gama rytmus EEG fyziologie MeSH
- lidé MeSH
- mapování mozku MeSH
- mozková kůra fyziologie patofyziologie MeSH
- percepce řeči fyziologie MeSH
- refrakterní epilepsie patofyziologie psychologie MeSH
- rozpomínání fyziologie MeSH
- slovní zásoba MeSH
- zraková percepce fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
BACKGROUND AND OBJECTIVE: Cognitive deficits in older adults attributable to Alzheimer's disease (AD) pathology are featured early on by hippocampal impairment. Among tests used to evaluate memory, verbal memory tests with controlled encoding and cued recall are believed to be specific for hippocampal impairment. The objective of this study was to assess the relation between left and right hippocampal volumes and several frequently used memory tests. METHODS: Fifty six nondemented older adults (30 with amnestic mild cognitive impairment and 26 cognitively healthy older adults) underwent neuropsychological testing including: (1) The Enhanced Cued Recall test (ECR), a memory test with controlled encoding and recall; (2) the Auditory Verbal Learning Test (AVLT), a verbal memory test without controlled encoding and with delayed recall; and (3) The Rey-Osterrieth Complex Figure test (ROCF), a visuospatial memory test-recall condition. 1.5T brain MRI scans were used to measure estimated total intracranial volume (eTIV) along with hippocampal right and left volumes, which were measured with quantitative volumetry using FreeSurfer package (version 4.4.0). Spearman partial correlation controlled for age was used to correct for non-normal score distribution and effect of age. RESULTS: We found moderate correlations of hippocampal volumes with AVLT 1-5 scores, AVLT delayed recall, ECR free and total recall, and ROCF reproduction. Total recall in ECR using cued recall was not superior to any of the free recall tests. No correlation in any memory test was achieved with eTIV. CONCLUSION: Verbal memory tests, either with controlled encoding and cued delayed recall (ECR), or without it (AVLT), as well as nonverbal memory test with delayed recall (ROCF), equally reflect hippocampal atrophy in nondemented older adults.
- Klíčová slova
- Amnestic mild cognitive impairment, MRI, episodic memory, hippocampus,
- MeSH
- atrofie patologie MeSH
- hipokampus patologie MeSH
- kognitivní poruchy komplikace patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- neuropsychologické testy MeSH
- počítačové zpracování obrazu MeSH
- poruchy paměti etiologie MeSH
- retrospektivní studie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- stárnutí patologie MeSH
- verbální učení fyziologie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
The way the human brain represents speech in memory is still unknown. An obvious characteristic of speech is its evolvement over time. During speech processing, neural oscillations are modulated by the temporal properties of the acoustic speech signal, but also acquired knowledge on the temporal structure of language influences speech perception-related brain activity. This suggests that speech could be represented in the temporal domain, a form of representation that the brain also uses to encode autobiographic memories. Empirical evidence for such a memory code is lacking. We investigated the nature of speech memory representations using direct cortical recordings in the left perisylvian cortex during delayed sentence reproduction in female and male patients undergoing awake tumor surgery. Our results reveal that the brain endogenously represents speech in the temporal domain. Temporal pattern similarity analyses revealed that the phase of frontotemporal low-frequency oscillations, primarily in the beta range, represents sentence identity in working memory. The positive relationship between beta power during working memory and task performance suggests that working memory representations benefit from increased phase separation.SIGNIFICANCE STATEMENT Memory is an endogenous source of information based on experience. While neural oscillations encode autobiographic memories in the temporal domain, little is known on their contribution to memory representations of human speech. Our electrocortical recordings in participants who maintain sentences in memory identify the phase of left frontotemporal beta oscillations as the most prominent information carrier of sentence identity. These observations provide evidence for a theoretical model on speech memory representations and explain why interfering with beta oscillations in the left inferior frontal cortex diminishes verbal working memory capacity. The lack of sentence identity coding at the syllabic rate suggests that sentences are represented in memory in a more abstract form compared with speech coding during speech perception and production.
- Klíčová slova
- electrocorticography, memory representations, sentence repetition, speech perception, speech production, temporal pattern similarity,
- MeSH
- dospělí MeSH
- elektrokortikografie MeSH
- krátkodobá paměť fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mozek fyziologie MeSH
- percepce řeči fyziologie MeSH
- řeč fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Memory tests using controlled encoding and cued recall paradigm (CECR) have been shown to identify prodromal Alzheimer's disease (AD), but information about the effectiveness of CECR compared to other memory tests in predicting clinical progression is missing. OBJECTIVE: The aim was to examine the predictive ability of a memory test based on the CECR paradigm in comparison to other memory/non-memory tests for conversion to dementia in patients with amnestic mild cognitive impairment (aMCI). METHODS: 270 aMCI patients from the clinical-based Czech Brain Aging Study underwent a comprehensive neuropsychological assessment including the Enhanced Cued Recall test (ECR), a memory test with CECR, two verbal memory tests without controlled encoding: the Auditory Verbal Learning Test (AVLT) and Logical memory test (LM), a visuospatial memory test: the Rey-Osterrieth Complex Figure test, and cognitive testing based on the Uniform Data Set battery. The patients were followed prospectively. Conversion to dementia as a function of cognitive performance was examined using Cox proportional hazard models. RESULTS: 144 (53%) patients converted to dementia. Most converters (89%) developed dementia due to AD or mixed (AD and vascular) dementia. Comparing the four memory tests, the delayed recall scores on AVLT and LM best predicted conversion to dementia. Adjusted hazard ratios (HR) of immediate recall scores on ECR, AVLT, and LM were similar to the HR of categorical verbal fluency. CONCLUSION: Using the CECR memory paradigm in assessment of aMCI patients has no superiority over verbal and non-verbal memory tests without cued recall in predicting conversion to dementia.
- Klíčová slova
- Alzheimer’s disease, memory, mild cognitive impairment, verbal fluency,
- MeSH
- Alzheimerova nemoc * diagnóza MeSH
- kognitivní dysfunkce * psychologie MeSH
- krátkodobá paměť MeSH
- lidé MeSH
- neuropsychologické testy MeSH
- progrese nemoci MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
- Publikační typ
- tisková chyba MeSH
Despite advances in understanding the cellular and molecular processes underlying memory and cognition, and recent successful modulation of cognitive performance in brain disorders, the neurophysiological mechanisms remain underexplored. High frequency oscillations beyond the classic electroencephalogram spectrum have emerged as a potential neural correlate of fundamental cognitive processes. High frequency oscillations are detected in the human mesial temporal lobe and neocortical intracranial recordings spanning gamma/epsilon (60-150 Hz), ripple (80-250 Hz) and higher frequency ranges. Separate from other non-oscillatory activities, these brief electrophysiological oscillations of distinct duration, frequency and amplitude are thought to be generated by coordinated spiking of neuronal ensembles within volumes as small as a single cortical column. Although the exact origins, mechanisms and physiological roles in health and disease remain elusive, they have been associated with human memory consolidation and cognitive processing. Recent studies suggest their involvement in encoding and recall of episodic memory with a possible role in the formation and reactivation of memory traces. High frequency oscillations are detected during encoding, throughout maintenance, and right before recall of remembered items, meeting a basic definition for an engram activity. The temporal coordination of high frequency oscillations reactivated across cortical and subcortical neural networks is ideally suited for integrating multimodal memory representations, which can be replayed and consolidated during states of wakefulness and sleep. High frequency oscillations have been shown to reflect coordinated bursts of neuronal assembly firing and offer a promising substrate for tracking and modulation of the hypothetical electrophysiological engram.
- Klíčová slova
- cognition, intracranial EEG, local field potential, memory consolidation, network oscillations, sharp-wave ripples,
- MeSH
- elektroencefalografie MeSH
- kognice * fyziologie MeSH
- lidé MeSH
- mozek fyziologie MeSH
- mozkové vlny fyziologie MeSH
- paměť fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Brain imaging studies suggest localization of verbal working memory in the left dorsolateral prefrontal cortex (DLPFC) while face processing and memory is localized in the inferior temporal cortex and other brain areas. The goal of this study was to assess the effect of left DLPFC low-frequency repetitive transcranial magnetic stimulation (rTMS) on verbal recall and face recognition. The study revealed a significant decrease of free recall in word encoding under rTMS (110% of motor threshold, 0.9 Hz) in comparison with sham stimulation (p=0.03), while no significant difference was found with facial memory tests. Our findings support the essential role of the left DLPFC in word but not facial memory and confirm the content specific arrangement of cortical areas involved in semantic memory. As a non-invasive tool, rTMS is useful for cognitive brain mapping and the functional localization of the category specific memory system.
- MeSH
- dospělí MeSH
- elektrická stimulace MeSH
- krátkodobá paměť fyziologie MeSH
- lidé MeSH
- obličej MeSH
- paměť fyziologie MeSH
- prefrontální mozková kůra fyziologie MeSH
- rozpomínání fyziologie MeSH
- rozpoznávání (psychologie) fyziologie MeSH
- rozpoznávání obrazu MeSH
- sémantika MeSH
- spánkový lalok fyziologie MeSH
- transkraniální magnetická stimulace * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH