Metaheuristic algorithm Dotaz Zobrazit nápovědu
This study proposes the One-to-One-Based Optimizer (OOBO), a new optimization technique for solving optimization problems in various scientific areas. The key idea in designing the suggested OOBO is to effectively use the knowledge of all members in the process of updating the algorithm population while preventing the algorithm from relying on specific members of the population. We use a one-to-one correspondence between the two sets of population members and the members selected as guides to increase the involvement of all population members in the update process. Each population member is chosen just once as a guide and is only utilized to update another member of the population in this one-to-one interaction. The proposed OOBO's performance in optimization is evaluated with fifty-two objective functions, encompassing unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types, and the CEC 2017 test suite. The optimization results highlight the remarkable capacity of OOBO to strike a balance between exploration and exploitation within the problem-solving space during the search process. The quality of the optimization results achieved using the proposed OOBO is evaluated by comparing them to eight well-known algorithms. The simulation findings show that OOBO outperforms the other algorithms in addressing optimization problems and can give more acceptable quasi-optimal solutions. Also, the implementation of OOBO in six engineering problems shows the effectiveness of the proposed approach in solving real-world optimization applications.
- Klíčová slova
- engineering, exploitation, exploration, metaheuristic algorithm, one-to-one correspondence, sensors,
- Publikační typ
- časopisecké články MeSH
This paper introduces the Botox Optimization Algorithm (BOA), a novel metaheuristic inspired by the Botox operation mechanism. The algorithm is designed to address optimization problems, utilizing a human-based approach. Taking cues from Botox procedures, where defects are targeted and treated to enhance beauty, the BOA is formulated and mathematically modeled. Evaluation on the CEC 2017 test suite showcases the BOA's ability to balance exploration and exploitation, delivering competitive solutions. Comparative analysis against twelve well-known metaheuristic algorithms demonstrates the BOA's superior performance across various benchmark functions, with statistically significant advantages. Moreover, application to constrained optimization problems from the CEC 2011 test suite highlights the BOA's effectiveness in real-world optimization tasks.
- Klíčová slova
- Botox, exploitation, exploration, human-inspired, metaheuristic, optimization,
- Publikační typ
- časopisecké články MeSH
A new metaheuristic algorithm called green anaconda optimization (GAO) which imitates the natural behavior of green anacondas has been designed. The fundamental inspiration for GAO is the mechanism of recognizing the position of the female species by the male species during the mating season and the hunting strategy of green anacondas. GAO's mathematical modeling is presented based on the simulation of these two strategies of green anacondas in two phases of exploration and exploitation. The effectiveness of the proposed GAO approach in solving optimization problems is evaluated on twenty-nine objective functions from the CEC 2017 test suite and the CEC 2019 test suite. The efficiency of GAO in providing solutions for optimization problems is compared with the performance of twelve well-known metaheuristic algorithms. The simulation results show that the proposed GAO approach has a high capability in exploration, exploitation, and creating a balance between them and performs better compared to competitor algorithms. In addition, the implementation of GAO on twenty-one optimization problems from the CEC 2011 test suite indicates the effective capability of the proposed approach in handling real-world applications.
- Klíčová slova
- bio-inspired, exploitation, exploration, green anaconda, metaheuristic, optimization,
- Publikační typ
- časopisecké články MeSH
This paper presents a new evolutionary-based approach called a Subtraction-Average-Based Optimizer (SABO) for solving optimization problems. The fundamental inspiration of the proposed SABO is to use the subtraction average of searcher agents to update the position of population members in the search space. The different steps of the SABO's implementation are described and then mathematically modeled for optimization tasks. The performance of the proposed SABO approach is tested for the optimization of fifty-two standard benchmark functions, consisting of unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types, and the CEC 2017 test suite. The optimization results show that the proposed SABO approach effectively solves the optimization problems by balancing the exploration and exploitation in the search process of the problem-solving space. The results of the SABO are compared with the performance of twelve well-known metaheuristic algorithms. The analysis of the simulation results shows that the proposed SABO approach provides superior results for most of the benchmark functions. Furthermore, it provides a much more competitive and outstanding performance than its competitor algorithms. Additionally, the proposed approach is implemented for four engineering design problems to evaluate the SABO in handling optimization tasks for real-world applications. The optimization results show that the proposed SABO approach can solve for real-world applications and provides more optimal designs than its competitor algorithms.
- Klíčová slova
- exploitation, exploration, metaheuristic, optimization, subtraction average, swarm-inspired,
- Publikační typ
- časopisecké články MeSH
This article presents a comprehensively state-of-the-art investigation of the engineering applications utilized by binary metaheuristic algorithms. Surveyed work is categorized based on application scenarios and solution encoding, and describes these algorithms in detail to help researchers choose appropriate methods to solve related applications. It is seen that transfer function is the main binary coding of metaheuristic algorithms, which usually adopts Sigmoid function. Among the contributions presented, there were different implementations and applications of metaheuristic algorithms, or the study of engineering applications by different objective functions such as the single- and multi-objective problems of feature selection, scheduling, layout and engineering structure optimization. The article identifies current troubles and challenges by the conducted review, and discusses that novel binary algorithm, transfer function, benchmark function, time-consuming problem and application integration are need to be resolved in future.
- Klíčová slova
- Binary optimization, Engineering applications, Metaheuristic algorithms,
- Publikační typ
- časopisecké články MeSH
In this paper, a new human-based metaheuristic algorithm called Technical and Vocational Education and Training-Based Optimizer (TVETBO) is introduced to solve optimization problems. The fundamental inspiration for TVETBO is taken from the process of teaching work-related skills to applicants in technical and vocational education and training schools. The theory of TVETBO is expressed and mathematically modeled in three phases: (i) theory education, (ii) practical education, and (iii) individual skills development. The performance of TVETBO when solving optimization problems is evaluated on the CEC 2017 test suite for problem dimensions equal to 10, 30, 50, and 100. The optimization results show that TVETBO, with its high abilities to explore, exploit, and create a balance between exploration and exploitation during the search process, is able to provide effective solutions for the benchmark functions. The results obtained from TVETBO are compared with the performances of twelve well-known metaheuristic algorithms. A comparison of the simulation results and statistical analysis shows that the proposed TVETBO approach provides better results in most of the benchmark functions and provides a superior performance in competition with competitor algorithms. Furthermore, in order to measure the effectiveness of the proposed approach in dealing with real-world applications, TVETBO is implemented on twenty-two constrained optimization problems from the CEC 2011 test suite. The simulation results show that TVETBO provides an effective and superior performance when solving constrained optimization problems of real-world applications compared to competitor algorithms.
- Klíčová slova
- education, exploitation, exploration, human-based, metaheuristic, optimization, technical and vocational education and training,
- Publikační typ
- časopisecké články MeSH
Balancing diversity and convergence among solutions in many-objective optimization is challenging, particularly in high-dimensional spaces with conflicting objectives. This paper presents the Many-Objective Marine Predator Algorithm (MaOMPA), an adaptation of the Marine Predators Algorithm (MPA) specifically enhanced for many-objective optimization tasks. MaOMPA integrates an elitist, non-dominated sorting and crowding distance mechanism to maintain a well-distributed set of solutions on the Pareto front. MaOMPA improves upon traditional metaheuristic methods by achieving a robust balance between exploration and exploitation using the predator-prey interaction model. The algorithm underwent evaluation on various benchmarks together with complex real-world engineering problems where it showed superior outcomes when compared against state-of-the-art generational distance and hypervolume and coverage metrics. Engineers and researchers can use MaOMPA as an effective reliable tool to address complex optimization scenarios in engineering design. The MaOMPA source code is available at https://github.com/kanak02/MaOMPA .
- Klíčová slova
- Convergence, Diversity, Information feedback mechanism, Many-objective optimization, Marine predator algorithm, Metaheuristic algorithm,
- MeSH
- algoritmy * MeSH
- potravní řetězec * MeSH
- predátorské chování * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
In this paper, with motivation from the No Free Lunch theorem, a new human-based metaheuristic algorithm named Preschool Education Optimization Algorithm (PEOA) is introduced for solving optimization problems. Human activities in the preschool education process are the fundamental inspiration in the design of PEOA. Hence, PEOA is mathematically modeled in three phases: (i) the gradual growth of the preschool teacher's educational influence, (ii) individual knowledge development guided by the teacher, and (iii) individual increase of knowledge and self-awareness. The PEOA's performance in optimization is evaluated using fifty-two standard benchmark functions encompassing unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types, as well as the CEC 2017 test suite. The optimization results show that PEOA has a high ability in exploration-exploitation and can balance them during the search process. To provide a comprehensive analysis, the performance of PEOA is compared against ten well-known metaheuristic algorithms. The simulation results show that the proposed PEOA approach performs better than competing algorithms by providing effective solutions for the benchmark functions and overall ranking as the first-best optimizer. Presenting a statistical analysis of the Wilcoxon signed-rank test shows that PEOA has significant statistical superiority in competition with compared algorithms. Furthermore, the implementation of PEOA in solving twenty-two optimization problems from the CEC 2011 test suite and four engineering design problems illustrates its efficacy in real-world optimization applications.
- MeSH
- algoritmy * MeSH
- benchmarking MeSH
- inženýrství MeSH
- lidé MeSH
- počítačová simulace MeSH
- předškolní dítě MeSH
- učitelé * MeSH
- Check Tag
- lidé MeSH
- předškolní dítě MeSH
- Publikační typ
- časopisecké články MeSH
Metaheuristic optimization algorithms play an essential role in optimizing problems. In this article, a new metaheuristic approach called the drawer algorithm (DA) is developed to provide quasi-optimal solutions to optimization problems. The main inspiration for the DA is to simulate the selection of objects from different drawers to create an optimal combination. The optimization process involves a dresser with a given number of drawers, where similar items are placed in each drawer. The optimization is based on selecting suitable items, discarding unsuitable ones from different drawers, and assembling them into an appropriate combination. The DA is described, and its mathematical modeling is presented. The performance of the DA in optimization is tested by solving fifty-two objective functions of various unimodal and multimodal types and the CEC 2017 test suite. The results of the DA are compared to the performance of twelve well-known algorithms. The simulation results demonstrate that the DA, with a proper balance between exploration and exploitation, produces suitable solutions. Furthermore, comparing the performance of optimization algorithms shows that the DA is an effective approach for solving optimization problems and is much more competitive than the twelve algorithms against which it was compared to. Additionally, the implementation of the DA on twenty-two constrained problems from the CEC 2011 test suite demonstrates its high efficiency in handling optimization problems in real-world applications.
- Klíčová slova
- drawer, exploitation, exploration, human-inspired methods, optimization,
- Publikační typ
- časopisecké články MeSH
This paper introduces a new human-based metaheuristic algorithm called Sewing Training-Based Optimization (STBO), which has applications in handling optimization tasks. The fundamental inspiration of STBO is teaching the process of sewing to beginner tailors. The theory of the proposed STBO approach is described and then mathematically modeled in three phases: (i) training, (ii) imitation of the instructor's skills, and (iii) practice. STBO performance is evaluated on fifty-two benchmark functions consisting of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, and the CEC 2017 test suite. The optimization results show that STBO, with its high power of exploration and exploitation, has provided suitable solutions for benchmark functions. The performance of STBO is compared with eleven well-known metaheuristic algorithms. The simulation results show that STBO, with its high ability to balance exploration and exploitation, has provided far more competitive performance in solving benchmark functions than competitor algorithms. Finally, the implementation of STBO in solving four engineering design problems demonstrates the capability of the proposed STBO in dealing with real-world applications.
- MeSH
- algoritmy * MeSH
- inženýrství MeSH
- počítačová simulace MeSH
- řešení problému * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH