Panax ginseng Dotaz Zobrazit nápovědu
Embryogenic culture was initiated from mature zygotic embryos of Panax ginseng. Multiple somatic embryos formed and proliferated on Murashige and Skoog medium supplemented with 2,4-dichlorophenoxyacetic acid (2.26 microM) and kinetin (0.046 microM). Mature as well as immature somatic embryos grew into plantlets lacking roots on the same media. Histomorphological analysis of somatic embryos treated with abscisic acid (ABA) and polyethylene glycol (PEG 4000) showed a slight improvement in the root meristem organization of torpedo-stage embryos (embryos were more compact and their cells exhibited a lower degree of vacuolation). Shoot regeneration of non-treated somatic embryos was 31% while that for somatic embryos treated with PEG 4000 and ABA was 70%. Moreover, 75% of plants regenerated from PEG- and ABA-treated embryos formed roots while plants from non-treated embryos did not form roots.
- MeSH
- kořeny rostlin účinky léků růst a vývoj MeSH
- kultivační média MeSH
- kyselina abscisová farmakologie MeSH
- polyethylenglykoly farmakologie MeSH
- regenerace MeSH
- semena rostlinná účinky léků růst a vývoj ultrastruktura MeSH
- ženšen účinky léků embryologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kultivační média MeSH
- kyselina abscisová MeSH
- polyethylenglykoly MeSH
The aim of this study was to determine the amount of phenol compounds in tinctures prepared from Ginkgo leaves, Echinacea plant, and Ginseng roots and to evaluate the antioxidative activity of these preparations. We studied the antioxidative activity using the standard 2,2-diphenyl-1-picrylhydrazyl (DPPH.) radical cation scavenging and tyrosine nitration inhibition tests. The obtained findings showed that the amount of phenol compounds in the studied tinctures differed and ranged between 114 to 340+/-29 gallic acid equivalents (GAE) mg/100 mL. We found that the amount of phenol compounds in Ginkgo tincture was statistically significantly greater than that in Echinacea or Ginseng tinctures. The effectiveness of Ginkgo tincture was by 52.7% (P<0.01) lower (from 1343+/-11 mumol catechin/100 mL solution to 637+/-64 catechin/100 mL solution), compared to Echinacea tincture. Ginseng tincture was the weakest scavenger of free radicals--only 8+/-1 micromol catechin/100 mL solution. The inhibition of tyrosine nitration was by 34% (P<0.01) greater in Echinacea tincture, compared to Ginkgo tincture (from 892+/-36 micromol catechin/100 mL solution to 588+/-17 micromol catechin/100 mL solution). Ginseng tincture was the weakest inhibitor of tyrosine nitration--only 20+/-8 micromol catechin/100 mL solution, which was by 44.6 times less, compared to Echinacea tincture. Tests on DPPH. radical cation scavenging and inhibition of nitration showed that the antioxidative activity of Echinacea tincture was statistically significantly greater compared to that of Ginkgo or Ginseng tinctures. This allows us to conclude that antioxidative activity is determined not only by phenol compounds, but also by a complex of other components of medicinal raw material.
- MeSH
- antioxidancia analýza MeSH
- Echinacea chemie MeSH
- fenoly analýza MeSH
- Ginkgo biloba chemie MeSH
- indikátory a reagencie MeSH
- interpretace statistických dat MeSH
- rostlinné přípravky chemie MeSH
- scavengery volných radikálů analýza MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- ženšen chemie MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- srovnávací studie MeSH
- Názvy látek
- antioxidancia MeSH
- fenoly MeSH
- indikátory a reagencie MeSH
- rostlinné přípravky MeSH
- scavengery volných radikálů MeSH
Plant-based nootropics are a diverse group of natural drugs that can improve cognitive abilities through various physiological mechanisms, especially in cases where these functions are weakened or impaired. In many cases, the nootropics enhance erythrocyte plasticity and inhibit aggregation, which improves the blood's rheological properties and increases its flow to the brain. Many of these formulations possess antioxidant activity that protects brain tissue from neurotoxicity and improves the brain's oxygen supply. They can induce the synthesis of neuronal proteins, nucleic acids, and phospholipids for constructing and repairing neurohormonal membranes. These natural compounds can potentially be present in a great variety of herbs, shrubs, and even some trees and vines. The plant species reviewed here were selected based on the availability of verifiable experimental data and clinical trials investigating potential nootropic effects. Original research articles, relevant animal studies, meta-analyses, systematic reviews, and clinical trials were included in this review. Selected representatives of this heterogeneous group included Bacopa monnieri (L.) Wettst., Centella asiatica (L.) Urban, Eleutherococcus senticosus (Rupr. & Maxim.) Maxim., Ginkgo biloba L., Lepidium meyenii Walp., Panax ginseng C.A. Meyer, Paullinia cupana Kunth, Rhodiola rosea L., Schisandra chinensis (Turcz.) Baill., and Withania somnifera (L.) Dunal. The species are depicted and described, together with their active components and nootropic effects, and evidence of their efficacy is presented. The study provides brief descriptions of the representative species, their occurrence, history, and the chemical composition of the principle medicinal compounds, with uses, indications, experimental treatments, dosages, possible side effects, and contraindications. Most plant nootropics must be taken at optimal doses for extended periods before measurable improvement occurs, but they are generally very well tolerated. Their psychoactive properties are not produced by a single molecule but by a synergistic combination of several compounds. The available data suggest that including extracts from these plants in medicinal products to treat cognitive disorders can have substantial potential therapeutic benefits.
- Klíčová slova
- Ayurvedic medicinal plants, Ginkgo biloba, Panax ginseng, antioxidant activity, brahmi, gotu kola, learning ability, medicinal herbs, memory, smart drugs,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Nootropics, also known as "smart drugs" are a diverse group of medicinal substances whose action improves human thinking, learning, and memory, especially in cases where these functions are impaired. This review provides an up-to-date overview of the potential effectiveness and importance of nootropics. Based on their nature and their effects, this heterogeneous group of drugs has been divided into four subgroups: classical nootropic compounds, substances increasing brain metabolism, cholinergic, and plants and their extracts with nootropic effects. Each subgroup of nootropics contains several main representatives, and for each one, its uses, indications, experimental treatments, dosage, and possible side effects and contraindications are discussed. For the nootropic plant extracts, there is also a brief description of each plant representative, its occurrence, history, and chemical composition of the medicinal part. Lastly, specific recommendations regarding the use of nootropics by both ill and healthy individuals are summarized.
- Klíčová slova
- Panax ginseng, Paullinia cupana, antioxidant activity, ayurvedic, brain injury, learning, memory, nootropics, piracetam, smart drugs,
- MeSH
- lidé MeSH
- nežádoucí účinky léčiv * MeSH
- nootropní látky * terapeutické užití MeSH
- učení MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- nootropní látky * MeSH
Medicinal plants are advantageously used in the treatment of respiratory tract diseases. Upper respiratory tract catarrh is one of the diseases associated with seasonal weakening of immunity, and therefore, plant drugs with a non-specific immunomodulation effect are often used. Such plants include, but are not limited to, Echinacea (Echinacea purpurea) and American ginseng (Panax quinquefolius). In combination with medicinal plants having antibacterial and antiseptic effects, such as thyme (Thymus vulgaris) and pelargonium (Pelargonium sidoides), they can constitute efficient help in the treatment of respiratory tract diseases, shorten the duration of the disease and reduce the need of antibiotic therapy. The text presented summarizes the basic information about these plants, their ingredients, mechanisms of action and clinical tests confirming their effect and monitoring eventual adverse effects.Key words: Echinacea purpurea Panax quinquefolius Pelargonium sidoides Thymus vulgaris upper respiratory tract catarrh immunity.
- MeSH
- fytoterapie * MeSH
- infekce dýchací soustavy farmakoterapie MeSH
- lidé MeSH
- Pelargonium MeSH
- rostlinné extrakty terapeutické užití MeSH
- Thymus (rostlina) MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- rostlinné extrakty MeSH
At present the use of medicaments of plant origin is on the increase. It is therefore necessary to take into consideration that there exist known as well as potential interactions between the medicament of the medicinal plant. The problematic plants include Echinacea, Allium cepa, Gingko biloba, Panax ginseng, as well as Hypericum perforatum, Valeriana officinalis, or Glycyrrhiza glabra. Its use should be limited, or completely excluded in the cases of simultaneous therapy with, e.g., warfarin, hepatotoxically acting medicaments, MAOI inhibitors, phenelzin sulphate, or phenytoin, as they may decrease of completely eliminate the therapeutic effect of the administered drugs, or they may cause a toxic damage to the organism.
- MeSH
- interakce bylin a léků MeSH
- léčivé přípravky aplikace a dávkování MeSH
- léčivé rostliny škodlivé účinky MeSH
- lékové interakce * MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- anglický abstrakt MeSH
- časopisecké články MeSH
- Názvy látek
- léčivé přípravky MeSH
Ginsenosides are a class of natural steroid glycosides and triterpene saponins found in Panax ginseng. After screening of a commercial ginsenoside compound library for low cellular cytotoxicity and the ability to mediate efficient reductions in hepatitis B virus (HBV) mRNA expression levels in HepG2.2.15 cells, three ginsenosides (Rg6, Rh4, and Rb3) are selected. Thereafter, using the same cellular model, all three ginsenosides are shown to mediate efficient, selective inhibition of HBV mRNA expression levels, and also interfere with the secretion of both HBV particles and hepatitis B surface antigen (HBsAg). Drug combination studies are performed in both HepG2.2.15 and HBV-infected HepG2-NTCPsec+ cell models with the selected ginsenosides and lamivudine (LMV), a nucleoside analogue used to treat chronic hepatitis B (CHB) infections. These studies, involving RT-qPCR and ELISA, suggest that Rh4/LMV combinations in particular act synergistically to inhibit the secretion of HBV particles and HBsAg. Therefore, on the assumption that appropriate in vivo data are in future agreement, Rh4, in particular, might be used in combination with nucleoside/nucleotide analogues (NUCs) to devise an effective, cost-efficient combination therapy for the treatment of patients with CHB infections.
The determination of Al, B, Cu, Fe, Mn, Ni, P, Zn and Ca, K, Mg by inductively coupled plasma optical emission spectrometry (ICP-OES) and flame atomic absorption spectroscopy (FAAS), respectively, in digests and infusions of Hibiscus sabdariffa (petals), Rosa canina (receptacles), Ginkgo biloba (leaves), Cymbopogon citratus (leaves), Aloe vera (leaves) and Panax ginseng (roots) was carried out in this study. Particular attention has been given to Al and heavy metals for the identification of possible raw material contaminants, their transformation into the infusion and for predicting their eventual role in the human diet during daily consumption. Additionally, Ion Chromatography (IC) speciation of Al in the leachates was carried out. In dry herbs, hibiscus and ginkgo appeared to contain the greatest contents of Al, Fe, K, Mn, Ni, Zn and B, Mg, P, respectively. A. vera contained the highest amount of Ca and highest values of Cu and P were observed in ginseng. In infusions, the topmost concentrations of Al, B, Cu, Fe, P, K, Mn, Ni, Zn were detected in those prepared from hibiscus petals, Ca from aloe leaves and Mg from leaves of ginkgo. According to a possible daily consumption exceeding 1 L, hibiscus decoction was identified as potentially dietetically significant in the content of certain elements. It seems to be possibly one of the top contributors of B from food (up to 5.5±0.2 mg/L). The Mg contained in the infusion (up to 106±5 mg/L) may be a contributor in the attenuation of blood pressure. A high amount of accessible Mn (up to 17.4±1.1 mg/L) can probably have an adverse effect in humans. The total Al allowance (up to 1.2±0.1 mg/L) suggests that no more than 1 L of the hibiscus infusion should be consumed per day by sensitive individuals including pregnant women and should be completely excluded from the diet of children under 6 months of age and children with chronic renal failure.
- MeSH
- hliník analýza MeSH
- léčivé rostliny chemie MeSH
- lidé MeSH
- nápoje analýza MeSH
- stopové prvky analýza MeSH
- výživová politika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hliník MeSH
- stopové prvky MeSH