Resurrection approach Dotaz Zobrazit nápovědu
Rapid environmental changes across Europe include warmer and increasingly variable temperatures, changes in soil nutrient availability, and pollinator decline. These abiotic and biotic changes can affect natural plant populations and force them to optimize resource use against competitors. To date, the evolution of competitive ability in the context of changes in nutrient availability remains understudied. In this study, we investigated whether the common calcareous grassland herb Leontodon hispidus recently evolved its competitive ability and response to nutrient availability. We compared ancestors sampled in 1995 and descendants sampled in 2018 and applied a competition treatment in combination with weekly nutrient treatments (no fertilizer, nitrogen, phosphorus, and both). We found evidence for evolution of increased competitive ability, with descendants producing more vegetative biomass than ancestors when grown under competition. Furthermore, supplementing nutrients (especially N) reduced differences in competitive ability between ancestors and descendants, suggesting that nutrients are a limiting factor in interspecific competition, which could be linked to the decreasing nitrogen emissions into the atmosphere since the 1990s. Our study demonstrates rapid contemporary evolution of competitive ability, but also the complexity of the underlying processes of contemporary evolution, and sheds light on the importance of understudied potential selection agents such as nutrient availability.
- Klíčová slova
- Competition, Fertilization experiment, Global change, Rapid evolution, Resurrection approach,
- MeSH
- biologická evoluce * MeSH
- biomasa MeSH
- dusík metabolismus MeSH
- fosfor MeSH
- pastviny * MeSH
- půda chemie MeSH
- živiny MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dusík MeSH
- fosfor MeSH
- půda MeSH
Resurrection plant Ramonda serbica is a suitable model to investigate vegetative desiccation tolerance. However, the detailed study of these mechanisms at the protein level is hampered by the severe tissue water loss, high amount of phenolics and polysaccharide, and possible protein modifications and aggregations during the extraction and purification steps. When applied to R. serbica leaves, widely used protein extraction protocols containing polyvinylpolypyrrolidone and ascorbate, as well as the phenol/SDS/buffer-based protocol recommended for recalcitrant plant tissues failed to eliminate persistent contamination and ensure high protein quality. Here we compared three protein extraction approaches aiming to establish the optimal one for both hydrated and desiccated R. serbica leaves. To evaluate the efficacy of these protocols by shotgun proteomics, we also created the first R. serbica annotated transcriptome database, available at http://www.biomed.unipd.it/filearrigoni/Trinity_Sample_RT2.fasta . The detergent-free phenol-based extraction combined with dodecyl-β-D-maltoside-assisted extraction enabled high-yield and high-purity protein extracts. The phenol-based protocol improved the protein-band resolution, band number, and intensity upon electrophoresis, and increased the protein yield and the number of identified peptides and protein groups by LC-MS/MS. Additionally, dodecyl-β-D-maltoside enabled solubilisation and identification of more membrane-associated proteins. The presented study paves the way for investigating the desiccation tolerance in R. serbica, and we recommend this protocol for similar recalcitrant plant material.
- Klíčová slova
- Peptide LC-MS/MS analysis, Phenol-based extraction, Ramonda serbica, Recalcitrant plant material, Resurrection plants, Soluble and membrane-bound protein extraction,
- MeSH
- chromatografie kapalinová metody MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- listy rostlin chemie MeSH
- Magnoliopsida chemie MeSH
- proteomika metody MeSH
- rostlinné proteiny izolace a purifikace MeSH
- tandemová hmotnostní spektrometrie metody MeSH
- voda chemie MeSH
- vysoušení MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- rostlinné proteiny MeSH
- voda MeSH
BACKGROUND: The family Toxocaridae is a group of zooparasitic nematodes of veterinary, medical and economic significance. However, the evolutionary relationship of Porrocaecum and Toxocara, both genera currently classified in Toxocaridae, and the monophyly of the Toxocaridae remain under debate. Moreover, the validity of the subgenus Laymanicaecum in the genus Porrocaecum is open to question. Due to the scarcity of an available genetic database, molecular identification of Porrocaecum nematodes is still in its infancy. METHODS: A number of Porrocaecum nematodes collected from the Eurasian marsh harrier Circus aeruginosus (Linnaeus) (Falconiformes: Accipitridae) in the Czech Republic were identified using integrated morphological methods (light and scanning electron microscopy) and molecular techniques (sequencing and analyzing the nuclear 18S, 28S and ITS regions). The complete mitochondrial genomes of the collected nematode specimens and of Porrocaecum (Laymanicaecum) reticulatum (Linstow, 1899) were sequenced and annotated for the first time. Phylogenetic analyses of ascaridoid nematodes based on the amino acid sequences of 12 protein-coding genes of mitochondrial genomes were performed using maximum likelihood and Bayesian inference. RESULTS: A new species of Porrocaecum, named P. moraveci n. sp., is described based on the morphological and genetic evidence. The mitogenomes of P. moraveci n. sp. and P. reticulatum both contain 36 genes and are 14,517 and 14,210 bp in length, respectively. Comparative mitogenomics revealed that P. moraveci n. sp. represents the first known species with three non-coding regions and that P. reticulatum has the lowest overall A + T content in the mitogenomes of ascaridoid nematodes tested to date. Phylogenetic analyses showed the representatives of Toxocara clustered together with species of the family Ascarididae rather than with Porrocaecum and that P. moraveci n. sp. is a sister to P. reticulatum. CONCLUSIONS: The characterization of the complete mitochondrial genomes of P. moraveci n. sp. and P. reticulatum is reported for the first time. Mitogenomic phylogeny analyses indicated that the family Toxocaridae is non-monophyletic and that the genera Porrocaecum and Toxocara do not have an affinity. The validity of the subgenus Laymanicaecum in Porrocaecum was also rejected. Our results suggest that: (i) Toxocaridae should be degraded to a subfamily of the Ascarididae that includes only the genus Toxocara; and (ii) the subfamily Porrocaecinae should be resurrected to include only the genus Porrocaecum. The present study enriches the database of ascaridoid mitogenomes and provides a new insight into the systematics of the superfamily Ascaridoidea.
- Klíčová slova
- Ascaridomorpha, Birds, Integrated taxonomy, Mitochondrial genome, New species, Parasitic nematodes, Phylogeny,
- MeSH
- Ascaridoidea * genetika MeSH
- Bayesova věta MeSH
- biologická evoluce MeSH
- fylogeneze MeSH
- genom mitochondriální * MeSH
- ptáci genetika MeSH
- Toxocara genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- dopisy MeSH
Artificial neural networks (ANN) methodology, molecular analyses and comparative morphology of the male postabdomen were used successfully in parallel for species identification and resolution of some taxonomic problems concerning West Palaearctic species of the genus Tachina Meigen, 1803. Supervised feed-forward ANN with back-propagation of errors was applied on morphometric and qualitative characters to solve known taxonomic discrepancies. Background molecular analyses based on mitochondrial markers CO I, Cyt b, 12S and 16S rDNA and study of male postabdominal structures were published separately. All three approaches resolved taxonomic doubts with identical results in the following five cases: case 1, the four presently recognized subgenera of the genus Tachina were confirmed and the description of a new subgenus was recommended; case 2, the validity of a new boreo-alpine species (sp.n.) was confirmed; case 3, the previously supposed presence of T. casta (Rondani, 1859) in central Europe was not supported; case 4, West Palaearctic T. nupta (Rondani, 1859) was contrasted with East Palaearctic specimens from Japan, which seem to represent a valid species not conspecific with central European specimens; T. nupta needs detailed further study; case 5, T. nigrohirta (Stein, 1924) resurrected recently from synonymy with T. ursina Meigen, 1824 was confirmed as a valid species. This parallel application of three alternative methods has enabled the principle of 'polyphasic taxonomy' to be tested and verified using these separate results. For the first time, the value of using the ANN approach in taxonomy was justified by two non-mathematical methods (molecular and morphological).
- MeSH
- anatomie srovnávací MeSH
- cytochromy typu b genetika MeSH
- Diptera anatomie a histologie klasifikace genetika MeSH
- druhová specificita MeSH
- hmyzí geny MeSH
- mitochondriální DNA genetika MeSH
- molekulární sekvence - údaje MeSH
- neuronové sítě * MeSH
- RNA ribozomální 16S genetika MeSH
- RNA ribozomální genetika MeSH
- sekvenční analýza DNA MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- cytochromy typu b MeSH
- mitochondriální DNA MeSH
- RNA ribozomální 16S MeSH
- RNA ribozomální MeSH
- RNA, ribosomal, 12S MeSH Prohlížeč
Tumor immune surveillance paradigm presumes that most pre-malignant cells or early malignant lesions can be eliminated (or at least controlled) by cells of the immune system. A critical feature that distinguishes advanced tumors from early neoplastic lesions is their capability to evade immune control. As a consequence, vast majority of clinically evident (advanced) tumors are poorly immunogenic. The principle goal of immunotherapy is thus a resurrection of the patient's inefficient or suppressed immune system so that it would once again become capable of launching sustained cytolytic attacks against tumor cells, which would ideally result in total and permanent eradication of cancer. Such activation of patient's anticancer immunity, however, can be achieved by strikingly different ways. This current review discusses diverse innovative immunotherapy approaches, which in the last 20 years achieved miraculous successes in the ever-lasting battle against cancer, including cytokine-based immunotherapy approaches, therapeutic monoclonal antibodies and their derivatives, cancer vaccines, and cell-based immunotherapy approaches.
- MeSH
- antigeny nádorové imunologie MeSH
- cytokiny imunologie MeSH
- imunoterapie * MeSH
- lidé MeSH
- monoklonální protilátky terapeutické užití MeSH
- nádory imunologie terapie MeSH
- protinádorové vakcíny terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- antigeny nádorové MeSH
- cytokiny MeSH
- monoklonální protilátky MeSH
- protinádorové vakcíny MeSH
Torrent frogs of the genus Petropedetes Reichenow, 1874 as currently understood have a disjunct distribution with species endemic to West, Central or East Africa. We herein present a phylogenetic analysis including all but one of the currently described 12 species of the genus. Maximum Likelihood and Bayesian analyses of combined nuclear (rag1, SIA, BDNF) and mitochondrial (16S, 12S, cytb) genes of more than 3500 base pairs, revealed clades corresponding to the three sub-Saharan regions. Molecular results are confirmed by morphological differences. Surprisingly, the three geographic clades do not form a monophyletic group with respect to closely related families Pyxicephalidae and Conrauidae and therefore require taxonomic changes. We resurrect Arthroleptides Nieden, 1911 for the East African taxa. The Central African taxa remain in the genus Petropedetes. The West African members are placed in the new genus Odontobatrachus gen. nov. The taxonomic position of the new genus remains incertae sedis as it was not assigned to any of the four families included in our analyses. Potential new species have been detected within all three major clades, pointing to a still not fully clarified diversity within African torrent frogs.
- Klíčová slova
- Africa, Amphibians, Arthroleptides, Odontobatrachus gen. nov, Petropedetes, Taxonomy,
- MeSH
- Bayesova věta MeSH
- fylogeneze * MeSH
- fylogeografie MeSH
- mitochondriální DNA genetika MeSH
- molekulární evoluce MeSH
- pravděpodobnostní funkce MeSH
- sekvenční analýza DNA MeSH
- žáby klasifikace genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Afrika MeSH
- Názvy látek
- mitochondriální DNA MeSH
Broad tapeworms (Cestoda: Diphyllobothriidea) are the principal agents of widespread food-borne cestodosis. Diphyllobothriosis and diplogonoporosis, caused by members of the genera Diphyllobothrium, Diplogonoporus and Adenocephalus, are the most common fish cestodoses with an estimated 20million people infected worldwide, and has seen recent (re)emergences in Europe due to the increasing popularity of eating raw or undercooked fish. Sparganosis is a debilitating and potentially lethal disease caused by the larvae of the genus Spirometra, which occurs throughout much of the (sub)tropics and is caused by the consumption of raw snakes and frogs, and drinking water contaminated by infected copepods. Both diseases are caused by several species, but the frequency by which the transition to humans has occurred has never been studied. Using a phylogenetic framework of 30 species based on large and small nuclear ribosomal RNA subunits (ssrDNA, lsrDNA), large subunit mitochondrial ribosomal RNA (rrnL) and cytochrome c oxidase subunit I (cox1), we hypothesize that humans have been acquired asaccidental hosts four times across the tree of life of diphyllobothriideans. However, polytomies prevent an unambiguous reconstruction of the evolution of intermediate and definitive host use. The broad host spectrum and the frequency with which switching between major host groups appears to have occurred, may hold the answer as to why accidental human infection occurred multiple times across the phylogeny of diphyllobothriideans. In this study Diplogonoporus is determined to be the junior synonym of Diphyllobothrium. Furthermore, we divide the latter polyphyletic genus into (i) the resurrected genus Dibothriocephalus to include freshwater and terrestrial species including Dibothriocephalus dendriticus, Dibothriocephalus latus and Dibothriocephalus nihonkaiensis as the most common parasites of humans, and (ii) the genus Diphyllobothrium to accommodate parasites from cetaceans including the type species Diphyllobothrium stemmacephalum and Diphyllobothrium balaenopterae n. comb. known also from humans. The non-monophyletic aggregate of marine species from seals is provisionally considered as incertae sedis.
- Klíčová slova
- Diphyllobothriidea, Diphyllobothriosis, Mitochondrial, Nuclear, Phylogeny, Sparganosis, Systematics, Taxonomic revision,
- MeSH
- Bayesova věta MeSH
- Cestoda klasifikace genetika patogenita ultrastruktura MeSH
- cestodózy etiologie parazitologie MeSH
- Copepoda parazitologie MeSH
- fylogeneze MeSH
- lidé MeSH
- mikroskopie elektronová rastrovací MeSH
- mitochondriální geny MeSH
- nemoci přenášené potravou etiologie parazitologie MeSH
- nemoci ryb parazitologie přenos MeSH
- potrava z moře (živočišná) parazitologie MeSH
- RNA helmintů genetika MeSH
- RNA ribozomální genetika MeSH
- ryby MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA helmintů MeSH
- RNA ribozomální MeSH
The amphioxus (lancelet) was first described by Pallas in 1774 and incorrectly assigned to mollusks. Since then, amphioxus attracted generations of zoologists. It took however almost one hundred years until Alexander Kowalevsky recognized that the larval stages of amphioxus had much in common with vertebrate embryos. Widely studied around 1900 as the 'elementary vertebrate', amphioxus as a model went out of fashion with the decline of comparative anatomy. Due to the scarcity of taxa at the invertebrate-to-vertebrate transition, amphioxus nevertheless remained the species with a privileged position in animal phylogeny. Its resurrection as the popular model of evolutionary developmental biology came with the advent of modern molecular biology and genomics. In the 1990s amphioxus developmental control genes were identified and characterized at a fast pace with the hope that such studies could provide novel insight into an important evolutionary transition: the origin of vertebrates. Indeed, amphioxus was found to be vertebrate-like but much simpler. Its body resembles that of the vertebrate, but it lacks most of the complexities associated with typical vertebrate organs. Its genome is only 1/6 of the human genome and it has not undergone the whole genome duplications that occurred in the vertebrate lineage. For all of these reasons, amphioxus became widely regarded as a useful proxy for the primitive ancestor of all vertebrates. A persistent problem interpreting amphioxus in the phylogenetic context is the difficulty to distinguish ancestral features, and those that are secondarily derived. There is no doubt that an integrative approach combining information from various disciplines is needed in order to help resolve such issues. Anatomy and comparative morphology has always been strong since the dawn of amphioxus research. Recent developments such as the availability of genomic sequences for three Branchiostoma species, established laboratory cultures of amphioxus that can be spawned at the investigator's will, or techniques allowing transgenesis and gene knockouts represent a major leap for studies on how the genotype generates a phenotype. These advances also enable the smooth transition of amphioxus from the model system of a distinguished past into the one with a very bright future.
- MeSH
- genom genetika MeSH
- kopinatci genetika růst a vývoj MeSH
- modely u zvířat * MeSH
- molekulární evoluce MeSH
- obratlovci genetika růst a vývoj MeSH
- vývojová biologie metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- úvodní články MeSH
Ancestral sequence reconstruction (ASR) represents a powerful approach for empirical testing structure-function relationships of diverse proteins. We employed ASR to predict sequences of five ancestral haloalkane dehalogenases (HLDs) from the HLD-II subfamily. Genes encoding the inferred ancestral sequences were synthesized and expressed in Escherichia coli, and the resurrected ancestral enzymes (AncHLD1-5) were experimentally characterized. Strikingly, the ancestral HLDs exhibited significantly enhanced thermodynamic stability compared to extant enzymes (ΔTm up to 24 °C), as well as higher specific activities with preference for short multi-substituted halogenated substrates. Moreover, multivariate statistical analysis revealed a shift in the substrate specificity profiles of AncHLD1 and AncHLD2. This is extremely difficult to achieve by rational protein engineering. The study highlights that ASR is an efficient approach for the development of novel biocatalysts and robust templates for directed evolution.
- Klíčová slova
- ancestral sequence reconstruction, haloalkane dehalogenase, protein engineering, robustness, substrate specificity,
- MeSH
- genetický kód MeSH
- hydrolasy chemie genetika metabolismus MeSH
- multivariační analýza MeSH
- proteinové inženýrství MeSH
- řízená evoluce molekul MeSH
- substrátová specifita MeSH
- termodynamika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- haloalkane dehalogenase MeSH Prohlížeč
- hydrolasy MeSH
The global decline of freshwater mussels and their crucial ecological services highlight the need to understand their phylogeny, phylogeography and patterns of genetic diversity to guide conservation efforts. Such knowledge is urgently needed for Unio crassus, a highly imperilled species originally widespread throughout Europe and southwest Asia. Recent studies have resurrected several species from synonymy based on mitochondrial data, revealing U. crassus to be a complex of cryptic species. To address long-standing taxonomic uncertainties hindering effective conservation, we integrate morphometric, phylogenetic, and phylogeographic analyses to examine species diversity within the U. crassus complex across its entire range. Phylogenetic analyses were performed using cytochrome c oxidase subunit I (815 specimens from 182 populations) and, for selected specimens, whole mitogenome sequences and Anchored Hybrid Enrichment (AHE) data on ∼ 600 nuclear loci. Mito-nuclear discordance was detected, consistent with mitochondrial DNA gene flow between some species during the Pliocene and Pleistocene. Fossil-calibrated phylogenies based on AHE data support a Mediterranean origin for the U. crassus complex in the Early Miocene. The results of our integrative approach support 12 species in the group: the previously recognised Unio bruguierianus, Unio carneus, Unio crassus, Unio damascensis, Unio ionicus, Unio sesirmensis, and Unio tumidiformis, and the reinstatement of five nominal taxa: Unio desectusstat. rev., Unio gontieriistat. rev., Unio mardinensisstat. rev., Unio nanusstat. rev., and Unio vicariusstat. rev. Morphometric analyses of shell contours reveal important morphospace overlaps among these species, highlighting cryptic, but geographically structured, diversity. The distribution, taxonomy, phylogeography, and conservation of each species are succinctly described.
- Klíčová slova
- Conservation, Freshwater mussels, Phylogeography, Unionida,
- MeSH
- fylogeneze MeSH
- fylogeografie MeSH
- genetická variace MeSH
- mitochondriální DNA genetika MeSH
- Unio * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- mitochondriální DNA MeSH