Thioester-containing proteins Dotaz Zobrazit nápovědu
The present concept of the transmission of Lyme disease from Borrelia-infected Ixodes sp. ticks to the naïve host assumes that a low number of spirochetes that manage to penetrate the midgut epithelium migrate through the hemocoel to the salivary glands and subsequently infect the host with the aid of immunomodulatory compounds present in tick saliva. Therefore, humoral and/or cellular immune reactions within the tick hemocoel may play an important role in tick competence to act as a vector for borreliosis. To test this hypothesis we have examined complement-like reactions in the hemolymph of the hard tick Ixodes ricinus against Borrelia afzelii (the most common vector and causative agent of Lyme disease in Europe). We demonstrate that I. ricinus hemolymph does not exhibit borreliacidal effects comparable to complement-mediated lysis of bovine sera. However, after injection of B. afzelii into the tick hemocoel, the spirochetes were efficiently phagocytosed by tick hemocytes and this cellular defense was completely eliminated by pre-injection of latex beads. As tick thioester-containing proteins (T-TEPs) are components of the tick complement system, we performed RNAi-mediated silencing of all nine genes encoding individual T-TEPs followed by in vitro phagocytosis assays. Silencing of two molecules related to the C3 complement component (IrC3-2 and IrC3-3) significantly suppressed phagocytosis of B. afzelii, while knockdown of IrTep (insect type TEP) led to its stimulation. However, RNAi-mediated silencing of T-TEPs or elimination of phagocytosis by injection of latex beads in B. afzelii-infected I. ricinus nymphs had no obvious impact on the transmission of spirochetes to naïve mice, as determined by B. afzelii infection of murine tissues following tick infestation. This result supports the concept that Borrelia spirochetes are capable of avoiding complement-related reactions within the hemocoel of ticks competent to transmit Lyme disease.
- Klíčová slova
- Borrelia, Ixodes, complement, phagocytosis, thioester-containing proteins,
- MeSH
- arachnida jako vektory imunologie mikrobiologie MeSH
- Borrelia burgdorferi komplex imunologie MeSH
- fagocytóza * MeSH
- hemocyty imunologie MeSH
- klíště imunologie mikrobiologie MeSH
- komplement metabolismus MeSH
- lymeská nemoc přenos MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- přenos infekční nemoci MeSH
- proteiny členovců metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- komplement MeSH
- proteiny členovců MeSH
The ability of ticks to act as vectors for a wide range of serious human and animal infectious diseases is apparently linked to the insufficiency of the tick immune system to effectively eliminate pathogens they transmit. At the tick-pathogen interface, an important role is presumably played by components of an ancient complement system that includes a repertoire of thioester-containing proteins (TEPs), which in Ixodes sp. comprises three α2-macroglobulins (A2M), three C3 complement component-related molecules (C3), two macroglobulin complement-related (Mcr) and one insect-type TEPs (Tep). In order to assess the function of TEPs in tick immunity, a quantitative real-time PCR expression analysis of tick TEPs was performed at various developmental stages of Ixodes ricinus, and in tissues dissected from adult females. Expression of TEP genes was mostly tissue specific; IrA2M1, IrC3-1, IrC3-3 were found to be expressed in cells of tick fat body adjacent to the tracheal trunks, IrA2M2 in hemocytes, IrTep in ovaries, IrMcr1 in salivary glands and only IrA2M3, IrC3-2 and IrMcr2 mRNAs were present in multiple organs. Expression of tick TEPs was further examined in response to injection of model microbes representing Gram-negative, Gram-positive bacteria and yeast. The greatest expression induction was observed for IrA2M1 and IrC3-1 after challenge with the yeast Candida albicans. Phagocytosis of the yeast was strongly dependent on an active thioester bond and the subsequent silencing of individual tick TEPs by RNA interference demonstrated the involvement of IrC3-1 and IrMcr2. This result suggests the existence of a distinct complement-like pathway, different from that leading to phagocytosis of Gram-negative bacteria. Understanding of the tick immune response against model microbes should provide new concepts for investigating interactions between ticks and relevant tick-borne pathogens.
- Klíčová slova
- Candida albicans, Complement, Innate immunity, Phagocytosis, Thioester-containing proteins, Tick Ixodes ricinus,
- MeSH
- Candida albicans imunologie MeSH
- fagocytóza imunologie MeSH
- gramnegativní bakterie imunologie MeSH
- grampozitivní bakterie imunologie MeSH
- hemolymfa imunologie MeSH
- klíště genetika imunologie MeSH
- malá interferující RNA MeSH
- proteiny členovců biosyntéza genetika imunologie MeSH
- RNA interference MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- malá interferující RNA MeSH
- proteiny členovců MeSH
Ticks are important ectoparasites and vectors of multiple human and animal diseases. The obligatory hemophagy of ticks provides a formidable route for parasite transmission from one host to another. Parasite survival inside the tick relies on the ability of a pathogen to escape or inhibit tick immune defenses, but the molecular interactions between the tick and its pathogens remain poorly understood. Here we report that tick genomes are unique in that they contain all known classes of the α(2)-macroglobulin family (α(2)M-F) proteins: α(2)-macroglobulin pan-protease inhibitors, C3 complement components, and insect thioester-containing and macroglobulin-related proteins. By using RNA interference-mediated gene silencing in the hard tick Ixodes ricinus we demonstrated the central role of a C3-like molecule in the phagocytosis of bacteria and revealed nonredundant functions for α(2)M-F proteins. Assessment of α(2)M-F functions in a single organism should significantly contribute to the general knowledge on the evolution and function of the complement system. Importantly, understanding the tick immune mechanisms should provide new concepts for efficient transmission blocking of tick-borne diseases.
- MeSH
- alfa-makroglobuliny genetika MeSH
- Chryseobacterium imunologie patogenita MeSH
- fagocytóza genetika MeSH
- genom imunologie MeSH
- genomika MeSH
- hemocyty imunologie metabolismus mikrobiologie patologie MeSH
- hmyzí proteiny genetika metabolismus MeSH
- infekce bakteriemi čeledi Flavobacteriaceae genetika imunologie MeSH
- komplement C3 genetika metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- malá interferující RNA genetika MeSH
- molekulární evoluce MeSH
- sekvenční analýza DNA MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alfa-makroglobuliny MeSH
- hmyzí proteiny MeSH
- komplement C3 MeSH
- malá interferující RNA MeSH
Entomopathogenic fungi (EPF) have been widely explored for their potential in the biological control of insect pests and as an environmentally friendly alternative to acaricides for limiting tick infestation in the field. The arthropod cuticle is the main barrier against fungal infection, however, an understanding of internal defense mechanisms after EPF intrusion into the invertebrate hemocoel is still rather limited. Using an infection model of the European Lyme borreliosis vector Ixodes ricinus with the EPF Metarhizium robertsii, we demonstrated that ticks are capable of protecting themselves to a certain extent against mild fungal infections. However, tick mortality dramatically increases when the capability of tick hemocytes to phagocytose fungal conidia is impaired. Using RNAi-mediated silencing of tick thioester-containing proteins (TEPs), followed by in vitro and/or in vivo phagocytic assays, we found that C3-like complement components and α2-macroglobulin pan-protease inhibitors secreted to the hemolymph play pivotal roles in M. robertsii phagocytosis.
- Klíčová slova
- Biological control, Entomopathogenic fungi, Hemocytes, Phagocytosis, Thioester-containing proteins, Tick,
- MeSH
- hemocyty MeSH
- klíště * MeSH
- lymeská nemoc * MeSH
- Metarhizium * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Prions are suspected as causative agents of several neuropathogenic diseases, even though the mode of their action is still not clear. A combination of chemical and recombinant syntheses can provide suitable probes for explanation of prions role in pathogenesis of neurodegenerative diseases. However, the prions contain several difficult sequences for synthesis by Fmoc/tBu approach. For that reason, the peptide thioesters as the key building blocks for chemical syntheses of proteins by native chemical ligation were employed. A scan of the mouse prion domain 93-231 was carried out in order to discover availability of derived thioesters as the suitable building blocks for a total chemical synthesis of the prion protein based probes. The synthesis on 2-chlorotritylchloride resin was utilized and after a deprotection of the samples for analysis, the peptide segments were purified and characterized. If the problems were detected during the synthesis, the segment was re-synthesized either using the special pseudoproline dipeptides or by splitting its molecule to two or three smaller segments, which were prepared easier. The protected segments, prepared correctly without any deletion and in sufficient amounts, were coupled either with EtSH after DIC/DMAP activation or with p-Ac-NH-Ph-SH using PyBOP activation to yield corresponding thioesters. In some special cases, the other techniques of thioester formation, like sulfonamide-safety catch and/or trimethylaluminium approach were utilized.
- MeSH
- estery chemická syntéza chemie MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- myši MeSH
- peptidové fragmenty chemická syntéza chemie MeSH
- priony chemická syntéza chemie MeSH
- proteolýza MeSH
- sekvence aminokyselin MeSH
- sulfidy chemická syntéza chemie MeSH
- techniky syntézy na pevné fázi MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- estery MeSH
- peptidové fragmenty MeSH
- priony MeSH
- sulfidy MeSH
OBJECTIVE: Somatic mutations in UBA1 have recently been causally linked to a severe adult-onset inflammatory condition referred to as VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. Ubiquitin-activating enzyme E1 (UBA-1) is of fundamental importance to the modulation of ubiquitin homeostasis and to the majority of downstream ubiquitylation-dependent cellular processes. Direct sequencing analysis of exon 3 containing the prevalent variants p.Met41Leu, p.Met41Val, and/or p.Met41Thr is usually used to confirm the disease-associated mutations. METHODS: We studied the clinical, biochemical, and molecular genetic characteristics of a 59-year-old man with a 2-year history of arthritis, fever, night sweats, nonspecific skin rash, lymphadenopathy, and myelodysplastic syndrome with multilineage dysplasia. RESULTS: The mutational analysis revealed a previously undescribed sequence variant c.1430G>C in exon 14 (p.Gly477Ala) in the gene UBA1. In vitro enzymatic analyses showed that p.Gly477Ala led to both decreased E1 ubiquitin thioester formation and E2 enzyme charging. CONCLUSION: We report a case of a patient of European ancestry with clinical manifestations of VEXAS syndrome associated with a newly identified dysfunctional UBA-1 enzyme variant. Due to the patient's insufficient response to various immunosuppressive treatments, allogeneic hematopoietic stem cell transplantation was performed, which resulted in significant improvement of clinical and laboratory manifestations of the disease.
- MeSH
- dospělí MeSH
- genetická onemocnění kůže MeSH
- lidé středního věku MeSH
- lidé MeSH
- mutace MeSH
- myelodysplastické syndromy * MeSH
- pacienti MeSH
- ubikvitin aktivující enzymy * genetika MeSH
- ubikvitiny MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- ubikvitin aktivující enzymy * MeSH
- ubikvitiny MeSH
Ticks are hematophagous arachnids transmitting a wide variety of pathogens including viruses, bacteria, and protozoans to their vertebrate hosts. The tick vector competence has to be intimately linked to the ability of transmitted pathogens to evade tick defense mechanisms encountered on their route through the tick body comprising midgut, hemolymph, salivary glands or ovaries. Tick innate immunity is, like in other invertebrates, based on an orchestrated action of humoral and cellular immune responses. The direct antimicrobial defense in ticks is accomplished by a variety of small molecules such as defensins, lysozymes or by tick-specific antimicrobial compounds such as microplusin/hebraein or 5.3-kDa family proteins. Phagocytosis of the invading microbes by tick hemocytes is likely mediated by the primordial complement-like system composed of thioester-containing proteins, fibrinogen-related lectins and convertase-like factors. Moreover, an important role in survival of the ingested microbes seems to be played by host proteins and redox balance maintenance in the tick midgut. Here, we summarize recent knowledge about the major components of tick immune system and focus on their interaction with the relevant tick-transmitted pathogens, represented by spirochetes (Borrelia), rickettsiae (Anaplasma), and protozoans (Babesia). Availability of the tick genomic database and feasibility of functional genomics based on RNA interference greatly contribute to the understanding of molecular and cellular interplay at the tick-pathogen interface and may provide new targets for blocking the transmission of tick pathogens.
- Klíčová slova
- Anaplasma, Babesia, Borrelia, antimicrobial peptides, innate immunity, phagocytosis, tick, tick-borne diseases,
- MeSH
- Anaplasma imunologie patogenita MeSH
- arachnida jako vektory imunologie mikrobiologie parazitologie MeSH
- Babesia imunologie patogenita MeSH
- Borrelia imunologie patogenita MeSH
- interakce hostitele a patogenu * MeSH
- klíšťata imunologie mikrobiologie parazitologie MeSH
- přirozená imunita * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Dermanyssus gallinae is a blood-feeding mite that parasitises wild birds and farmed poultry. Its remarkably swift processing of blood, together with the capacity to blood-feed during most developmental stages, makes this mite a highly debilitating pest. To identify specific adaptations to digestion of a haemoglobin-rich diet, we constructed and compared transcriptomes from starved and blood-fed stages of the parasite and identified midgut-enriched transcripts. We noted that midgut transcripts encoding cysteine proteases were upregulated with a blood meal. Mapping the full proteolytic apparatus, we noted a reduction in the suite of cysteine proteases, missing homologues for Cathepsin B and C. We have further identified and phylogenetically analysed three distinct transcripts encoding vitellogenins that facilitate the reproductive capacity of the mites. We also fully mapped transcripts for haem biosynthesis and the ferritin-based system of iron storage and inter-tissue trafficking. Additionally, we identified transcripts encoding proteins implicated in immune signalling (Toll and IMD pathways) and activity (defensins and thioester-containing proteins), RNAi, and ion channelling (with targets for commercial acaricides such as Fluralaner, Fipronil, and Ivermectin). Viral sequences were filtered from the Illumina reads and we described, in part, the RNA-virome of D. gallinae with identification of a novel virus, Red mite quaranjavirus 1.
- MeSH
- drůbež MeSH
- infestace roztoči * veterinární parazitologie MeSH
- kur domácí MeSH
- nemoci drůbeže * MeSH
- roztoči * genetika MeSH
- sekvenování transkriptomu MeSH
- virom MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
Ticks are blood feeding parasites transmitting a wide variety of pathogens to their vertebrate hosts. The vector competence of ticks is tightly linked with their immune system. Despite its importance, our knowledge of tick innate immunity is still inadequate and the limited number of sufficiently characterized immune molecules and cellular reactions are dispersed across numerous tick species. The phagocytosis of microbes by tick hemocytes seems to be coupled with a primitive complement-like system, which possibly involves self/nonself recognition by fibrinogen-related lectins and the action of thioester-containing proteins. Ticks do not seem to possess a pro-phenoloxidase system leading to melanization and also coagulation of tick hemolymph has not been experimentally proven. They are capable of defending themselves against microbial infection with a variety of antimicrobial peptides comprising lysozymes, defensins and molecules not found in other invertebrates. Virtually nothing is known about the signaling cascades involved in the regulation of tick antimicrobial immune responses. Midgut immunity is apparently the decisive factor of tick vector competence. The gut content is a hostile environment for ingested microbes, which is mainly due to the antimicrobial activity of hemoglobin fragments generated by the digestion of the host blood as well as other antimicrobial peptides. Reactive oxygen species possibly also play an important role in the tick-pathogen interaction. The recent release of the Ixodes scapularis genome and the feasibility of RNA interference in ticks promise imminent and substantial progress in tick innate immunity research.