WS2 nanotube Dotaz Zobrazit nápovědu
Multiwall WS2 nanotubes have been synthesized from W18O49 nanowhiskers in substantial amounts for more than a decade. The established growth model is based on the "surface-inward" mechanism, whereby the high-temperature reaction with H2S starts on the nanowhisker surface, and the oxide-to-sulfide conversion progresses inward until hollow-core multiwall WS2 nanotubes are obtained. In the present work, an upgraded in situ SEM μReactor with H2 and H2S sources has been conceived to study the growth mechanism in detail. A hitherto undescribed growth mechanism, named "receding oxide core", which complements the "surface-inward" model, is observed and kinetically evaluated. Initially, the nanowhisker is passivated by several WS2 layers via the surface-inward reaction. At this point, the diffusion of H2S through the already existing outer layers becomes exceedingly sluggish, and the surface-inward reaction is slowed down appreciably. Subsequently, the tungsten suboxide core is anisotropically volatilized within the core close to its tips. The oxide vapors within the core lead to its partial out-diffusion, partially forming a cavity that expands with reaction time. Additionally, the oxide vapors react with the internalized H2S gas, forming fresh WS2 layers in the cavity of the nascent nanotube. The rate of the receding oxide core mode increases with temperatures above 900 °C. The growth of nanotubes in the atmospheric pressure flow reactor is carried out as well, showing that the proposed growth model (receding oxide core) is also relevant under regular reaction parameters. The current study comprehensively explains the WS2 nanotube growth mechanism, combining the known model with contemporary insight.
- Klíčová slova
- WS2 nanotube, electron microscopy, ex situ, in situ, reaction mechanism, sulfidation,
- Publikační typ
- časopisecké články MeSH
Uranium is a high-value energy element, yet also poses an appreciable environmental burden. The demand for a straightforward, low energy, and environmentally friendly method for encapsulating uranium species can be beneficial for long-term storage of spent uranium fuel and a host of other applications. Leveraging on the low melting point (60 °C) of uranyl nitrate hexahydrate and nanocapillary effect, a uranium compound is entrapped in the hollow core of WS2 nanotubes. Followingly, the product is reduced at elevated temperatures in a hydrogen atmosphere. Nanocrystalline UO2 nanoparticles anchor within the WS2 nanotube lumen are obtained through this procedure. Such methodology can find utilization in the processing of spent nuclear fuel or other highly active radionuclides as well as a fuel for deep space missions. Moreover, the low melting temperatures of different heavy metal-nitrate hydrates, pave the way for their encapsulation within the hollow core of the WS2 nanotubes, as demonstrated herein.
- Klíčová slova
- WS2 nanotubes, entrapment, nanocapillary effect, uranium oxide, uranyl nitrate hydrate,
- Publikační typ
- časopisecké články MeSH
To satisfy the needs of the current technological world that demands high performance and efficiency, a deep understanding of the whole fabrication process of electronic devices based on low-dimensional materials is necessary for rapid prototyping of devices. The fabrication processes of such nanoscale devices often include exposure to an electron beam. A field effect transistor (FET) is a core device in current computation technology, and FET configuration is also commonly used for extraction of electronic properties of low-dimensional materials. In this experimental study, we analyze the effect of electron beam exposure on electrical properties of individual WS2 nanotubes in the FET configuration by in-operando transport measurements inside a scanning electron microscope. Upon exposure to the electron beam, we observed a significant change in the resistance of individual substrate-supported nanotubes (by a factor of 2 to 14) that was generally irreversible. The resistance of each nanotube did not return to its original state even after keeping it under ambient conditions for hours to days. Furthermore, we employed Kelvin probe force microscopy to monitor surface potential and identified that substrate charging is the primary cause of changes in nanotubes' resistance. Hence, extra care should be taken when analyzing nanostructures in contact with insulating oxides that are subject to electron exposure during or after fabrication.
- Publikační typ
- časopisecké články MeSH
WS2 nanotubes present many new technologies under development, including reinforced biocompatible polymers, membranes, photovoltaic-based memories, ferroelectric devices, etc. These technologies depend on the aspect ratio (length/diameter) of the nanotubes, which was limited to 100 or so. A new synthetic technique is presented, resulting in WS2 nanotubes a few hundred micrometers long and diameters below 50 nm (aspect ratios of 2000-5000) in high yields. Preliminary investigation into the mechanistic aspects of the two-step synthesis reveals that W5O14 nanowhisker intermediates are formed in the first step of the reaction instead of the ubiquitous W18O49 nanowhiskers used in the previous syntheses. The electrical and photoluminescence properties of the long nanotubes were studied. WS2 nanotube-based paper-like material was prepared via a wet-laying process, which could not be realized with the 10 μm long WS2 nanotubes. Ultrafiltration of gold nanoparticles using the nanotube-paper membrane was demonstrated.
- Klíčová slova
- buckypaper, felt, growth, sulfidation, tungsten disulfide nanotubes, tungsten suboxide nanowhiskers, wet-laying,
- Publikační typ
- časopisecké články MeSH
Fabrication of chiral assemblies of plasmonic nanoparticles is a highly attractive and challenging task, with promising applications in light emission, detection, and sensing. So far, primarily organic chiral templates have been used for chirality inscription. Despite recent progress in using chiral ionic liquids in synthesis, the use of organic templates significantly limits the variety of nanoparticle preparation techniques. Here, we demonstrate the utilization of seemingly achiral inorganic nanotubes as templates for the chiral assembly of nanoparticles. We show that both metallic and dielectric nanoparticles can be attached to scroll-like chiral edges propagating on the surfaces of WS2 nanotubes. Such assembly can be performed at temperatures as high as 550 °C. This large temperature range significantly widens the portfolio of nanoparticle fabrication techniques, allowing us to demonstrate a variety of chiral nanoparticle assemblies, ranging from metals (Au, Ga), semiconductors (Ge), and compound semiconductors (GaAs) to oxides (WO3).
- Klíčová slova
- chirality, nanoparticle assembly, nanotubes, step edge, tungsten disulfide,
- Publikační typ
- časopisecké články MeSH
Even though WS2 nanotubes (NTs-WS2) have great potential as anode materials for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) thanks to their unusual layered structure, their conductivity and cycling stability are far from satisfactory. To tackle these issues, carbon-coated WS2 (NTs-WS2@C) nanocomposites were prepared through a facile synthesis method that involved precipitating a carbon precursor (20% sucrose) on WS2 nanotubes, followed by annealing treatment under an argon environment. Thanks to the presence of highly conductive and mechanically robust carbon on the outer surface, NTs-WS2@C nanocomposites show improved electrochemical performance compared with bare NTs-WS2. After 60 cycles at 80 mA g-1 current density, the cells display high capacities of 305 mAh g-1 in LIBs and 152 mAh g-1 in SIBs, respectively. As the current density increases to 600 mA g-1, it provides specific capacities of 209 and 115 mAh g-1, correspondingly. The enhanced electrochemical performance in LIBs and SIBs is primarily attributed to the synergistic effects of the tubular architecture of WS2, carbon network and stable nanocomposite structure, which can effectively constrain volume variation during the metal ions intercalation/deintercalation processes.
- Klíčová slova
- anode, carbon coating, lithium ion batteries, nanotubes, sodium ion batteries, tungsten disulfides,
- Publikační typ
- časopisecké články MeSH
Misfit layered compounds (MLCs) MX-TX2, where M, T = metal atoms and X = S, Se, or Te, and their nanotubes are of significant interest due to their rich chemistry and unique quasi-1D structure. In particular, LnX-TX2 (Ln = rare-earth atom) constitute a relatively large family of MLCs, from which nanotubes have been synthesized. The properties of MLCs can be tuned by the chemical and structural interplay between LnX and TX2 sublayers and alloying of each of the Ln, T, and X elements. In order to engineer them to gain desirable performance, a detailed understanding of their complex structure is indispensable. MLC nanotubes are a relative newcomer and offer new opportunities. In particular, like WS2 nanotubes before, the confinement of the free carriers in these quasi-1D nanostructures and their chiral nature offer intriguing physical behavior. High-resolution transmission electron microscopy in conjunction with a focused ion beam are engaged to study SmS-TaS2 nanotubes and their cross-sections at the atomic scale. The atomic resolution images distinctly reveal that Ta is in trigonal prismatic coordination with S atoms in a hexagonal structure. Furthermore, the position of the sulfur atoms in both the SmS and the TaS2 sublattices is revealed. X-ray photoelectron spectroscopy, electron energy loss spectroscopy, and X-ray absorption spectroscopy are carried out. These analyses conclude that charge transfer from the Sm to the Ta atoms leads to filling of the Ta 5d z 2 level, which is confirmed by density functional theory (DFT) calculations. Transport measurements show that the nanotubes are semimetallic with resistivities in the range of 10-4 Ω·cm at room temperature, and magnetic susceptibility measurements show a superconducting transition at 4 K.
- Publikační typ
- časopisecké články MeSH
This Review focuses on noncovalent functionalization of graphene and graphene oxide with various species involving biomolecules, polymers, drugs, metals and metal oxide-based nanoparticles, quantum dots, magnetic nanostructures, other carbon allotropes (fullerenes, nanodiamonds, and carbon nanotubes), and graphene analogues (MoS2, WS2). A brief description of π-π interactions, van der Waals forces, ionic interactions, and hydrogen bonding allowing noncovalent modification of graphene and graphene oxide is first given. The main part of this Review is devoted to tailored functionalization for applications in drug delivery, energy materials, solar cells, water splitting, biosensing, bioimaging, environmental, catalytic, photocatalytic, and biomedical technologies. A significant part of this Review explores the possibilities of graphene/graphene oxide-based 3D superstructures and their use in lithium-ion batteries. This Review ends with a look at challenges and future prospects of noncovalently modified graphene and graphene oxide.
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Networks of nanowires, nanotubes, and nanosheets are important for many applications in printed electronics. However, the network conductivity and mobility are usually limited by the resistance between the particles, often referred to as the junction resistance. Minimising the junction resistance has proven to be challenging, partly because it is difficult to measure. Here, we develop a simple model for electrical conduction in networks of 1D or 2D nanomaterials that allows us to extract junction and nanoparticle resistances from particle-size-dependent DC network resistivity data. We find junction resistances in porous networks to scale with nanoparticle resistivity and vary from 5 Ω for silver nanosheets to 24 GΩ for WS2 nanosheets. Moreover, our model allows junction and nanoparticle resistances to be obtained simultaneously from AC impedance spectra of semiconducting nanosheet networks. Through our model, we use the impedance data to directly link the high mobility of aligned networks of electrochemically exfoliated MoS2 nanosheets (≈ 7 cm2 V-1 s-1) to low junction resistances of ∼2.3 MΩ. Temperature-dependent impedance measurements also allow us to comprehensively investigate transport mechanisms within the network and quantitatively differentiate intra-nanosheet phonon-limited bandlike transport from inter-nanosheet hopping.
- Publikační typ
- časopisecké články MeSH