flatworm Dotaz Zobrazit nápovědu
BACKGROUND: Helminth extracellular vesicles (EVs) are known to have a three-way communication function among parasitic helminths, their host and the host-associated microbiota. They are considered biological containers that may carry virulence factors, being therefore appealing as therapeutic and prophylactic target candidates. This study aims to describe and characterise EVs secreted by Sparicotyle chrysophrii (Polyopisthocotyla: Microcotylidae), a blood-feeding gill parasite of gilthead seabream (Sparus aurata), causing significant economic losses in Mediterranean aquaculture. METHODS: To identify proteins involved in extracellular vesicle biogenesis, genomic datasets from S. chrysophrii were mined in silico using known protein sequences from Clonorchis spp., Echinococcus spp., Fasciola spp., Fasciolopsis spp., Opisthorchis spp., Paragonimus spp. and Schistosoma spp. The location and ultrastructure of EVs were visualised by transmission electron microscopy after fixing adult S. chrysophrii specimens by high-pressure freezing and freeze substitution. EVs were isolated and purified from adult S. chrysophrii (n = 200) using a newly developed ultracentrifugation-size-exclusion chromatography protocol for Polyopisthocotyla, and EVs were characterised via nanoparticle tracking analysis and tandem mass spectrometry. RESULTS: Fifty-nine proteins involved in EV biogenesis were identified in S. chrysophrii, and EVs compatible with ectosomes were observed in the syncytial layer of the haptoral region lining the clamps. The isolated and purified nanoparticles had a mean size of 251.8 nm and yielded 1.71 × 108 particles · mL-1. The protein composition analysis identified proteins related to peptide hydrolases, GTPases, EF-hand domain proteins, aerobic energy metabolism, anticoagulant/lipid-binding, haem detoxification, iron transport, EV biogenesis-related, vesicle-trafficking and other cytoskeletal-related proteins. Several identified proteins, such as leucyl and alanyl aminopeptidases, calpain, ferritin, dynein light chain, 14-3-3, heat shock protein 70, annexin, tubulin, glutathione S-transferase, superoxide dismutase, enolase and fructose-bisphosphate aldolase, have already been proposed as target candidates for therapeutic or prophylactic purposes. CONCLUSIONS: We have unambiguously demonstrated for the first time to our knowledge the secretion of EVs by an ectoparasitic flatworm, inferring their biogenesis machinery at a genomic and transcriptomic level, and by identifying their location and protein composition. The identification of multiple therapeutic targets among EVs' protein repertoire provides opportunities for target-based drug discovery and vaccine development for the first time in Polyopisthocotyla (sensu Monogenea), and in a fish-ectoparasite model.
- Klíčová slova
- Drug target candidates, Ectosomes, Electron microscopy, Exosomes, Monogenea, Peptidases, Polyopisthocotyla, Prophylactic target candidates,
- MeSH
- extracelulární vezikuly * MeSH
- mořan zlatý * parazitologie MeSH
- ploštěnci * MeSH
- proteomika MeSH
- Trematoda * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The stunning diversity of cichlid fishes has greatly enhanced our understanding of speciation and radiation. Little is known about the evolution of cichlid parasites. Parasites are abundant components of biodiversity, whose diversity typically exceeds that of their hosts. In the first comprehensive phylogenetic parasitological analysis of a vertebrate radiation, we study monogenean parasites infecting tropheine cichlids from Lake Tanganyika. Monogeneans are flatworms usually infecting the body surface and gills of fishes. In contrast to many other parasites, they depend only on a single host species to complete their lifecycle. Our spatially comprehensive combined nuclear-mitochondrial DNA dataset of the parasites covering almost all tropheine host species (N = 18), reveals species-rich parasite assemblages and shows consistent host-specificity. Statistical comparisons of host and parasite phylogenies based on distance and topology-based tests demonstrate significant congruence and suggest that host-switching is rare. Molecular rate evaluation indicates that species of Cichlidogyrus probably diverged synchronically with the initial radiation of the tropheines. They further diversified through within-host speciation into an overlooked species radiation. The unique life history and specialisation of certain parasite groups has profound evolutionary consequences. Hence, evolutionary parasitology adds a new dimension to the study of biodiversity hotspots like Lake Tanganyika.
- MeSH
- biodiverzita MeSH
- biologická evoluce * MeSH
- cichlidy genetika parazitologie MeSH
- fylogeneze MeSH
- interakce hostitele a parazita genetika MeSH
- jezera MeSH
- ploštěnci genetika MeSH
- žábry parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Little phylogeographic structure is presumed for highly mobile species in pelagic zones. Lake Tanganyika is a unique ecosystem with a speciose and largely endemic fauna famous for its remarkable evolutionary history. In bathybatine cichlid fishes, the pattern of lake-wide population differentiation differs among species. We assessed the congruence between the phylogeographic structure of bathybatine cichlids and their parasitic flatworm Cichlidogyrus casuarinus to test the magnifying glass hypothesis. Additionally, we evaluated the use of a PoolSeq approach to study intraspecific variation in dactylogyrid monogeneans. The lake-wide population structure of C. casuarinus ex Hemibates stenosoma was assessed based on a portion of the cox1 gene combined with morphological characterisation. Additionally, intraspecific mitogenomic variation among 80 parasite samples from one spatially constrained metapopulation was assessed using shotgun NGS. While no clear geographic genetic structure was detected in parasites, both geographic and host-related phenotypic variation was apparent. The incongruence with the genetic north-south gradient observed in H. stenosoma may be explained by the broad host range of this flatworm including eupelagic bathybatine host species that form panmictic populations across the lake. In addition, we present the first parasite mitogenome from Lake Tanganyika and propose a methodological framework for studying the intraspecific mitogenomic variation of dactylogyrid monogeneans.
- Klíčová slova
- Bathybatini, Cichlidogyrus, PoolSeq, cox1, monogenea,
- Publikační typ
- časopisecké články MeSH
The spermatozoon ultrastructure of the progenetic cestode Diplocotyle olrikii (Spathebothriidea) has been examined using transmission electron microscopy and cytochemical staining with periodic acid-thiosemicarbazide-silver proteinate (PA-TSC-SP) for glycogen. The spermatozoon is a filiform cell, tapered at both extremities. Its moderately electron-dense cytoplasm possesses two parallel axonemes of unequal lengths. New for the Cestoda is a finding of three types of the mature spermatozoa with respect to different axonemal structure. The first type has both axonemes with standard 9 + '1' trepaxonematan pattern. The second type is represented by a spermatozoon having one axoneme with 9 + '1' structure and the second one with 9 + 0 pattern. The third type includes the two axonemes with 9 + 0 pattern. Microtubule doublets of the 9 + 0 axonemes contain either inner dynein arms or no dynein arms. In addition to the two axonemes, all three types of the mature sperm cells contain parallel nucleus, parallel cortical microtubules, four electron-dense plaques/attachment zones, and glycogen. The anterior extremity of the gamete exhibits a centriole surrounded by a semiarc of up to five electron-dense tubular structures. The distal end of the first type spermatozoa exhibits two morphological variants, represented either by (i) nucleus or (ii) remnants of the disorganized axoneme. Distal extremity of the spermatozoa of the second and third types contains doublets and singlets of disorganized axoneme. The ultrastructural characters of the spermatozoon of progenetic D. olrikii support the basal position of the Spathebothriidea within the Eucestoda.
- Klíčová slova
- Diplocotyle olrikii, Progenesis, Spathebothriidea, Spermatozoon, Ultrastructure,
- MeSH
- axonema ultrastruktura MeSH
- buněčné jádro ultrastruktura MeSH
- centrioly ultrastruktura MeSH
- Cestoda ultrastruktura MeSH
- cytoplazma ultrastruktura MeSH
- spermatogeneze fyziologie MeSH
- spermie ultrastruktura MeSH
- transmisní elektronová mikroskopie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Unlike their marine counterparts, tropical freshwater clupeids receive little scientific attention. However, they sustain important fisheries that may be of (inter)national commercial interest. Africa harbours over 20 freshwater clupeid species within Pellonulini. Recent research suggests their most abundant parasites are gill-infecting monogenean flatworms within Kapentagyrus. After inspecting specimens of 12 freshwater clupeids from West and Central Africa, mainly sourced in biodiversity collections, we propose 11 new species of Kapentagyrus, which we describe using their haptoral and genital morphology. Because of their high morphological similarity, species delineation relies mostly on the morphometrics of anchors and hooks. Specifically, earlier, molecular taxonomic work indicated that the proportion between the length of the anchor roots, and between the hook and anchor length, is diagnostic. On average, about one species of Kapentagyrus exists per pellonuline species, although Pellonula leonensis harbours four species and Microthrissa congica two, while Microthrissa moeruensis and Potamothrissa acutirostris share a gill monogenean species. This study more than quadruples the number of known species of Kapentagyrus, also almost quadrupling the number of pellonuline species of which monogeneans are known. Since members of Kapentagyrus are informative about their hosts' ecology, evolutionary history, and introduction routes, this enables a parasitological perspective on several data-poor African fisheries.
- Klíčová slova
- Africa, Clupeidae, Clupeiformes, Dactylogyridea, Pellonulini, biodiversity infrastructure, flatworm, historical collection, monogenea, sardine,
- Publikační typ
- časopisecké články MeSH
The first three mitochondrial (mt) genomes of endosymbiotic turbellarian flatworms are characterised for the rhabdocoels Graffilla buccinicola, Syndesmis echinorum and S. kurakaikina. Interspecific comparison of the three newly obtained sequences and the only previously characterised rhabdocoel, the free-living species Bothromesostoma personatum, reveals high mt genomic variability, including numerous rearrangements. The first intrageneric comparison within rhabdocoels shows that gene order is not fully conserved even between congeneric species. Atp8, until recently assumed absent in flatworms, was putatively annotated in two sequences. Selection pressure was tested in a phylogenetic framework and is shown to be significantly relaxed in this and another protein-coding gene: cox1. If present, atp8 appears highly derived in platyhelminths and its functionality needs to be addressed in future research. Our findings for the first time allude to a large degree of undiscovered (mt) genomic plasticity in rhabdocoels. It merits further attention whether this variation is correlated with a symbiotic lifestyle. Our results illustrate that this phenomenon is widespread in flatworms as a whole and not exclusive to the better-studied neodermatans.
- Klíčová slova
- Endosymbiosis, Genomics, Mitochondrion, Platyhelminthes, Rhabdocoela,
- MeSH
- genom mitochondriální * MeSH
- genom u helmintů * MeSH
- mitochondriální protonové ATPasy genetika MeSH
- molekulární evoluce * MeSH
- ploštěnci * enzymologie genetika MeSH
- proteiny červů genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mitochondriální protonové ATPasy MeSH
- proteiny červů MeSH
Some taxonomic groups are less amenable to mitochondrial DNA barcoding than others. Due to the paucity of molecular information of understudied groups and the huge molecular diversity within flatworms, primer design has been hampered. Indeed, all attempts to develop universal flatworm-specific COI markers have failed so far. We demonstrate how high molecular variability and contamination problems limit the possibilities for barcoding using standard COI-based protocols in flatworms. As a consequence, molecular identification methods often rely on other widely applicable markers. In the case of Monogenea, a very diverse group of platyhelminth parasites, and Rhabdocoela, representing one-fourth of all free-living flatworm taxa, this has led to a relatively high availability of nuclear ITS and 18S/28S rDNA sequences on GenBank. In a comparison of the effectiveness in species assignment we conclude that mitochondrial and nuclear ribosomal markers perform equally well. In case intraspecific information is needed, rDNA sequences can guide the selection of the appropriate (i.e. taxon-specific) COI primers if available.
- Klíčová slova
- Monogenea, Rhabdocoela, mitochondrial DNA, primer design, ribosomal DNA, turbellarians,
- Publikační typ
- časopisecké články MeSH
A new rhabdocoel of the genus Syndesmis Silliman, 1881 (Umagillidae) is described from the intestine of the New Zealand sea urchin Evechinus chloroticus (Valenciennes, 1846) Mortensen, 1943a. This new species, Syndesmis kurakaikina n. sp., is morphologically distinct and can easily be recognised by its very long (±1 mm) stylet and its bright-red colour. In addition to providing a formal description, we present some observations on reproduction and life history of this new species. Fecundity is comparable to that of other umagillids and the rate of egg production and development increases with temperature. Hatching in this species is induced by intestinal fluids of its host. Relevant to global warming, we assessed the effect of temperature on survival, fecundity, and development. The tests indicate that Syndesmis kurakaikina n. sp. is tolerant of a wide range of temperatures (11-25 °C) and that its temperature optimum lies between 18.0 and 21.5 °C. Egg viability is, however, significantly compromised at the higher end of this temperature range, with expelled egg capsules often being deformed and showing increasingly lower rates of hatching. Given this, a rise in global temperature might increase the risk of Syndesmis kurakaikina n. sp. infecting new hosts and would possibly facilitate the spread of these endosymbionts.
- Klíčová slova
- Climate change, Echinodermata, Echinoidea, Flatworm, Global warming, Systematics,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Lake Tana is the largest lake in Ethiopia and the source of the Blue Nile. The lake harbours unique endemic cyprinid fish species, as well as the commercially important endemic Nile tilapia subspecies Oreochromis niloticus tana and the North African catfish Clarias gariepinus. Its endemicity, especially within the Labeobarbus radiation, its conservation importance and its economic indispensability attract scientific interest to the lake's ichthyofauna. Fish parasites of Lake Tana, however, are hitherto poorly known, and no formal report exists on its monogenean flatworms. For sustainable aquaculture and fisheries development, it is essential to study monogenean fish parasites in these economically most important fish species. Moreover, it remains to be verified whether this unique ecosystem and its endemicity gave rise to a distinct parasite fauna as well. RESULTS: Nile tilapia and North African catfish hosts were collected from Lake Tana in 2013. Nine species of monogenean parasites of two orders, Gyrodactylidea Bychowsky, 1937 and Dactylogyridea Bychowsky, 1937, were recovered. Gyrodactylus gelnari Přikrylová, Blažek & Vanhove, 2012, Macrogyrodactylus clarii Gussev, 1961, Quadriacanthus aegypticus El-Naggar & Serag, 1986 and two undescribed Quadriacanthus species were recovered from C. gariepinus. Oreochromis niloticus tana hosted Cichlidogyrus cirratus Paperna, 1964, C. halli (Price & Kirk, 1967), C. thurstonae Ergens, 1981 and Scutogyrus longicornis (Paperna & Thurston, 1969). CONCLUSIONS: Except for M. clarii, all species represent new records for Ethiopia. This first study on the monogenean fauna of Lake Tana revealed that the lake's North African catfish, as well as its endemic Nile tilapia subspecies, harbour parasites that are known from these host species elsewhere in Africa.
- Klíčová slova
- Cichlidogyrus, Dactylogyridea, Gyrodactylidea, Gyrodactylus, Macrogyrodactylus, Monogenea, Perciformes, Quadriacanthus, Scutogyrus, Siluriformes,
- MeSH
- cestodózy parazitologie veterinární MeSH
- cichlidy parazitologie MeSH
- jezera parazitologie MeSH
- nemoci ryb parazitologie MeSH
- ploštěnci klasifikace genetika izolace a purifikace fyziologie MeSH
- potrava z moře (živočišná) ekonomika parazitologie MeSH
- sumci parazitologie MeSH
- žábry parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Etiopie MeSH
Lake Tanganyika is well-known for its high species-richness and rapid radiation processes. Its assemblage of cichlid fishes recently gained momentum as a framework to study parasite ecology and evolution. It offers a rare chance to investigate the influence of a deepwater lifestyle in a freshwater fish-parasite system. Our study represents the first investigation of parasite intraspecific genetic structure related to host specificity in the lake. It focused on the monogenean flatworm Cichlidogyrus casuarinus infecting deepwater cichlids belonging to Bathybates and Hemibates. Morphological examination of C. casuarinus had previously suggested a broad host range, while the lake's other Cichlidogyrus species are usually host specific. However, ongoing speciation or cryptic diversity could not be excluded. To distinguish between these hypotheses, we analysed intraspecific diversity of C. casuarinus. Monogeneans from nearly all representatives of the host genera were examined using morphometrics, geomorphometrics and genetics. We confirmed the low host-specificity of C. casuarinus based on morphology and nuclear DNA. Yet, intraspecific variation of sclerotized structures was observed. Nevertheless, the highly variable mitochondrial DNA indicated recent population expansion, but no ongoing parasite speciation, confirming, for the first time in freshwater, reduced parasite host specificity in the deepwater realm, probably an adaptation to low host availability.
- MeSH
- analýza hlavních komponent MeSH
- Bayesova věta MeSH
- biologická evoluce MeSH
- cichlidy genetika parazitologie MeSH
- fylogeneze MeSH
- genetická variace MeSH
- haplotypy MeSH
- hostitelská specificita MeSH
- jezera MeSH
- paraziti genetika MeSH
- ploštěnci genetika MeSH
- populační dynamika MeSH
- žábry parazitologie MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Tanzanie MeSH