nanoparticle-based intervention Dotaz Zobrazit nápovědu
Background: Antimicrobial submicrometer particles are being studied as promising interventions against a wide range of skin conditions, such as fungal or bacterial infections. Aims: To submicronize chloroxine, the crystalline compound 5,7-dichloro-8-hydroxyquinoline, by nanoprecipitation and characterize the resulting assemblies. Methods: The chloroxine particles were stabilized by a nonionic surfactant and were studied by a broth microdilution assay against 20 medically important bacteria and fungi. The intervention was studied using a murine model of skin irritation. Results & conclusion: Chloroxine nanoparticles with a diameter of 600-800 nm exhibit good tolerability in terms of skin irritation in vivo and good antimicrobial activity. Thus, the fabricated formulation shows great promise for interventions for both cutaneous infection control and prophylaxis.
- Klíčová slova
- dermal infections, dermal safety, nanomedicine, nanoparticle-based intervention, submicronization,
- MeSH
- antibakteriální látky chemie MeSH
- antiinfekční látky * farmakologie MeSH
- chlorochinolinoly * MeSH
- mikrobiální testy citlivosti MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- antiinfekční látky * MeSH
- chlorochinolinoly * MeSH
- chloroxine MeSH Prohlížeč
SARS-CoV-2 claimed numerous lives and put nations on high alert. The lack of antiviral medications and the small number of approved vaccines, as well as the recurrence of adverse effects, necessitates the development of novel treatment ways to combat COVID-19. In this context, using databases such as PubMed, Google Scholar, and Science Direct, we gathered information about nanotechnology's involvement in the prevention, diagnosis and virus-like particle vaccine development. This review revealed that various nanomaterials like gold, polymeric, graphene and poly amino ester with carboxyl group coated magnetic nanoparticles have been explored for the fast detection of SARS-CoV-2. Personal protective equipment fabricated with nanoparticles, such as gloves, masks, clothes, surfactants, and Ag, TiO2 based disinfectants played an essential role in halting COVID-19 transmission. Nanoparticles are used not only in vaccine delivery, such as lipid nanoparticles mediated transport of mRNA-based Pfizer and Moderna vaccines, but also in the development of vaccine as the virus-like particles elicit an immune response. There are now 18 virus-like particle vaccines in pre-clinical development, with one of them, developed by Novavax, reported being in phase 3 trials. Due to the probability of upcoming COVID-19 waves, and the rise of new diseases, the future relevance of virus-like particles is imperative. Furthermore, psychosocial variables linked to vaccine reluctance constitute a critical problem that must be addressed immediately to avert pandemic.
- Klíčová slova
- COVID-19, SARS-CoV-2, diagnosis, prevention, virus-like particle vaccines,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Tuberculosis represents a major global health problem for which improved approaches are needed to shorten the course of treatment and to combat the emergence of resistant strains. The development of effective and safe nanobead-based interventions can be particularly relevant for increasing the concentrations of antitubercular agents within the infected site and reducing the concentrations in the general circulation, thereby avoiding off-target toxic effects. In this work, rifampicin, a first-line antitubercular agent, was encapsulated into biocompatible and biodegradable polyester-based nanoparticles. In a well-established BALB/c mouse model of pulmonary tuberculosis, the nanoparticles provided improved pharmacokinetics and pharmacodynamics. The nanoparticles were well tolerated and much more efficient than an equivalent amount of free rifampicin.
- Klíčová slova
- BALB/c mice, Drug delivery system, Histopathology, Nanoparticles, Pharmacokinetics, Rifampicin, Tuberculosis,
- MeSH
- antituberkulotika MeSH
- antituberkulózní antibiotika * farmakokinetika MeSH
- Mycobacterium tuberculosis * MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- nanostruktury MeSH
- nosiče léků MeSH
- rifampin * farmakokinetika MeSH
- tuberkulóza * farmakoterapie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antituberkulotika MeSH
- antituberkulózní antibiotika * MeSH
- nosiče léků MeSH
- rifampin * MeSH
The blocking of specific protein-protein interactions using nanoparticles is an emerging alternative to small molecule-based therapeutic interventions. However, the nanoparticles designed as "artificial proteins" generally require modification of their surface with (bio)organic molecules and/or polymers to ensure their selectivity and specificity of action. Here, we show that nanosized diamond crystals (nanodiamonds, NDs) without any synthetically installed (bio)organic interface enable the specific and efficient targeting of the family of extracellular signalling molecules known as fibroblast growth factors (FGFs). We found that low nanomolar solutions of detonation NDs with positive ζ-potential strongly associate with multiple FGF ligands present at sub-nanomolar concentrations and effectively neutralize the effects of FGF signalling in cells without interfering with other growth factor systems and serum proteins unrelated to FGFs. We identified an evolutionarily conserved FGF recognition motif, ∼17 amino acids long, that contributes to the selectivity of the ND-FGF interaction. In addition, we inserted this motif into a de novo constructed chimeric protein, which significantly improved its interaction with NDs. We demonstrated that the interaction of NDs, as purely inorganic nanoparticles, with proteins can mitigate pathological FGF signalling and promote the restoration of cartilage growth in a mouse limb explant model. Based on our observations, we foresee that NDs may potentially be applied as nanotherapeutics to neutralize disease-related activities of FGFs in vivo.
- Klíčová slova
- Cell signalling, FGF, Fibroblast growth factor, Nanodiamonds, Nanotherapeutics,
- MeSH
- aminokyselinové motivy MeSH
- buněčné linie MeSH
- chrupavka fyziologie MeSH
- embryo savčí MeSH
- fibroblastové růstové faktory metabolismus MeSH
- lidé MeSH
- ligandy MeSH
- myši MeSH
- nanodiamanty chemie MeSH
- proliferace buněk MeSH
- receptory fibroblastových růstových faktorů metabolismus MeSH
- signální transdukce MeSH
- techniky tkáňových kultur MeSH
- tibie fyziologie MeSH
- vazba proteinů MeSH
- viabilita buněk MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fibroblastové růstové faktory MeSH
- ligandy MeSH
- nanodiamanty MeSH
- receptory fibroblastových růstových faktorů MeSH
Organic-inorganic (O-I) nanomaterials are versatile platforms for an incredible high number of applications, ranging from heterogeneous catalysis to molecular sensing, cell targeting, imaging, and cancer diagnosis and therapy, just to name a few. Much of their potential stems from the unique control of organic environments around inorganic sites within a single O-I nanomaterial, which allows for new properties that were inaccessible using purely organic or inorganic materials. Structural and mechanistic characterization plays a key role in understanding and rationally designing such hybrid nanoconstructs. Here, we introduce a general methodology to identify and classify local (supra)molecular environments in an archetypal class of O-I nanomaterials, i.e., self-assembled monolayer-protected gold nanoparticles (SAM-AuNPs). By using an atomistic machine-learning guided workflow based on the Smooth Overlap of Atomic Positions (SOAP) descriptor, we analyze a collection of chemically different SAM-AuNPs and detect and compare local environments in a way that is agnostic and automated, i.e., with no need of a priori information and minimal user intervention. In addition, the computational results coupled with experimental electron spin resonance measurements prove that is possible to have more than one local environment inside SAMs, being the thickness of the organic shell and solvation primary factors in the determining number and nature of multiple coexisting environments. These indications are extended to complex mixed hydrophilic-hydrophobic SAMs. This work demonstrates that it is possible to spot and compare local molecular environments in SAM-AuNPs exploiting atomistic machine-learning approaches, establishes ground rules to control them, and holds the potential for the rational design of O-I nanomaterials instructed from data.
- Klíčová slova
- ESR, SOAP, fluorinated nanoparticles, machine learning, mixed monolayers, multiscale modeling, nanoconfinement,
- MeSH
- hydrofobní a hydrofilní interakce MeSH
- kovové nanočástice * chemie MeSH
- nanostruktury * chemie MeSH
- zlato chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- zlato MeSH
Viral infections have recently emerged not only as a health threat to people but rapidly became the cause of universal fatality on a large scale. Nanomaterials comprising functionalized nanoparticles (NPs) and quantum dots and nanotechnology-associated innovative detection methods, vaccine design, and nanodrug production have shown immense promise for interfacing with pathogenic viruses and restricting their entrance into cells. These viruses have been scrutinized using rapid diagnostic detection and therapeutic interventional options against the caused infections including vaccine development for prevention and control. Coronaviruses, namely SARS-CoV, MERS-CoV, and SARS-CoV-2, have endangered human life, and the COVID-19 (caused by SARS-CoV-2) outbreak has become a perilous challenge to public health globally with huge accompanying morbidity rates. Thus, it is imperative to expedite the drug and vaccine development efforts that would help mitigate this pandemic. In this regard, smart and innovative nano-based technologies and approaches encompassing applications of green nanomedicine, bio-inspired methods, multifunctional bioengineered nanomaterials, and biomimetic drug delivery systems/carriers can help resolve the critical issues regarding detection, prevention, and treatment of viral infections. This perspective review expounds recent nanoscience advancements for the detection and treatment of viral infections with focus on coronaviruses and encompasses nano-based formulations and delivery platforms, nanovaccines, and promising methods for clinical diagnosis, especially regarding SARS-CoV-2.
- Klíčová slova
- COVID-19, SARS-CoV-2, coronaviruses, graphene oxide, nanoparticles, nanotechnology, nanovaccines, quantum dots, viral infections,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Cancer, an intricate and multifaceted disease, is characterized by the uncontrolled proliferation of cells that can lead to serious health complications and ultimately death. Conventional therapeutic strategies mainly target rapidly dividing cancer cells, but often indiscriminately harm healthy cells in the process. As a result, there is a growing interest in exploring novel therapies that are both effective and less toxic to normal cells. Herbs have long been used as natural remedies for various diseases and conditions. Some herbal compounds exhibit potent anti-cancer properties, making them potential candidates for nutraceutical-based treatments. However, despite their promising efficacy, there are considerable limitations in utilizing herbal preparations due to their poor solubility, low bioavailability, rapid metabolism and excretion, as well as potential interference with other medications. Nanotechnology offers a unique platform to overcome these challenges by encapsulating herbal compounds within nanoparticles. This approach not only increases solubility and stability but also enhances the cellular uptake of nutraceuticals, allowing for controlled and targeted delivery of therapeutic agents directly at tumor sites. By harnessing the power of nanotechnology-enabled therapy, this new frontier in cancer treatment presents an opportunity to minimize toxicity while maximizing efficacy. In conclusion, this manuscript provides compelling evidence for integrating nanotechnology with nutraceuticals derived from herbal sources to optimize cancer therapy outcomes. We explore the roadblocks associated with traditional herbal treatments and demonstrate how nanotechnology can help circumvent these issues, paving the way for safer and more effective cancer interventions in future oncological practice.
- Klíčová slova
- Nutraceuticals, bioavailability, cancer, herbal active compounds, nanotechnology,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH