reactogenicity
Dotaz
Zobrazit nápovědu
BACKGROUND: A multicomponent meningococcal serogroups ABCWY vaccine (MenABCWY) could provide broad protection against disease-causing meningococcal strains and simplify the immunisation schedule. The aim of this trial was to confirm the effect of the licensed meningococcal serogroup B (MenB) vaccine, 4CMenB, against diverse MenB strains, and to assess the breadth of immune response against a panel of 110 MenB strains for MenABCWY containing the antigenic components of 4CMenB and licensed serogroups ACWY vaccine, MenACWY-CRM, the non-inferiority of the immune response with MenABCWY versus 4CMenB and MenACWY-CRM, safety, and MenABCWY lot-to-lot consistency. METHODS: We conducted a phase 3 randomised, controlled, observer-blinded trial of healthy adolescents and young adults (age 10-25 years) across 114 centres in Australia, Canada, Czechia, Estonia, Finland, Türkiye, and the USA. Exclusion criteria included previous vaccination with a MenB vaccine or (within the last 4 years) MenACWY vaccine. Participants were randomly allocated (5:5:3:3:3:1 ratio) via a central randomisation system using a minimisation procedure to receive 4CMenB at months 0, 2, and 6 (referred to as 4CMenB 0-2-6 hereafter); or 4CMenB at months 0 and 6 (referred to as 4CMenB 0-6 hereafter); or MenABCWY (three groups, each receiving one production lot of the MenACWY-CRM component) at months 0 and 6; or MenACWY-CRM at month 0. Demonstration in the per-protocol set of the consistency of three MenACWY-CRM component lots of the MenABCWY vaccine was a primary objective (demonstrated with two-sided 95% CIs for the ratio of human serum bactericidal antibody [hSBA] geometric mean titres against each serogroup within predefined criteria [0·5-2·0]). The primary endpoints (breadth of immune response) for the MenB component of MenABCWY and 4CMenB were measured using the endogenous complement hSBA (enc-hSBA) assay against a panel of 110 diverse MenB invasive disease strains. For each serum sample, 35 strains from the 110 MenB strain panel were randomly selected for testing. The 4CMenB breadth of immune response data have been published separately. For MenABCWY, breadth of immune response was assessed in two analyses: a test-based analysis of the percentage of samples (tests) without bactericidal serum activity against MenB strains 1 month after two MenABCWY doses versus the percentage after one MenACWY-CRM dose in the per-protocol set, and a responder-based analysis of the percentage of participants (responders) whose sera killed 70% or more strains at 1 month after two MenABCWY doses in the full analysis set. A lower limit of two-sided 95% CI above 65% would demonstrate breadth of immune response. Other primary outcomes included non-inferiority (5% margin) of two MenABCWY doses versus two 4CMenB doses by enc-hSBA assay in the per-protocol set, non-inferiority (10% margin) of two MenABCWY doses versus one MenACWY-CRM dose in MenACWY vaccine-naive participants by traditional hSBA assay in the per-protocol set, and safety in all vaccinated participants. This trial is registered with ClinicalTrials.gov, NCT04502693, and is complete. FINDINGS: Between Aug 14, 2020, and Sept 3, 2021, 3651 participants were enrolled and randomly allocated (900 in the 4CMenB 0-2-6 group and 908 in the 4CMenB 0-6 group, 1666 in the three MenABCWY groups combined, and 177 in the MenACWY-CRM group). All primary objectives for MenABCWY were met. Consistency of immune responses against the three production lots of the MenACWY component of MenABCWY was demonstrated since two-sided 95% CIs for the ratios of hSBA geometric mean titres against serogroups A, C, W, and Y for each pair of lots were within the predefined equivalence criteria. The lot data were pooled for the remainder of MenABCWY endpoints. By enc-hSBA assay, breadth of immune response against the MenB strain panel was 77·9% (95% CI 76·6 to 79·2) in the test-based analysis and 84·1% (81·4 to 86·5; 687 of 817 participants) in the responder-based analysis. Non-inferiority of MenABCWY to 4CMenB was demonstrated by enc-hSBA assay: the difference in percentage of samples with bactericidal serum activity between the MenABCWY group (82·5% [95% CI 82·1 to 83·0]; 21 222 of 25 715) and 4CMenB 0-2 group (83·1% [82·7 to 83·6]; 22 921 of 27 569) was -0·61% (-1·25 to 0·03). Non-inferiority of two-dose MenABCWY to one-dose MenACWY-CRM was demonstrated by traditional hSBA assay, with differences between the MenABCWY group and MenACWY group in percentages of participants with a four-fold rise in hSBA titres of 11·3% (5·9 to 19·0) for serogroup A, 47·2% (38·1 to 56·3) for serogroup C, 35·3% (26·9 to 44·5) for serogroup W, and 27·0% (19·4 to 35·8) for serogroup Y. MenABCWY reactogenicity was mostly of mild or moderate severity and transient, with similar frequencies of adverse events in the MenABCWY and 4CMenB groups and no safety concerns were identified. INTERPRETATION: This study demonstrates breadth of immune response against a panel of 110 MenB strains for the MenB component of the investigational MenABCWY vaccine, when administered as a 0-6 months schedule to the target population of adolescents and young adults, with predefined criteria for success met for both breadth of immune response endpoints and for non-inferiority versus 4CMenB. This investigational vaccine could provide broad meningococcal serogroup coverage in a simplified immunisation schedule, thus aiding the public health attempt in preventing invasive meningococcal disease due to five Neisseria meningitidis serogroups in adolescents and young adults. FUNDING: GSK.
- MeSH
- dítě MeSH
- dospělí MeSH
- imunogenicita vakcíny * MeSH
- jednoduchá slepá metoda MeSH
- lidé MeSH
- meningokokové infekce * prevence a kontrola imunologie MeSH
- meningokokové vakcíny * imunologie škodlivé účinky aplikace a dávkování MeSH
- mladiství MeSH
- mladý dospělý MeSH
- Neisseria meningitidis séroskupiny B imunologie MeSH
- Neisseria meningitidis imunologie MeSH
- protilátky bakteriální krev MeSH
- zdraví dobrovolníci pro lékařské studie MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- hodnocení ekvivalence MeSH
- klinické zkoušky, fáze III MeSH
- multicentrická studie MeSH
- Názvy látek
- 4CMenB vaccine MeSH Prohlížeč
- meningokokové vakcíny * MeSH
- protilátky bakteriální MeSH
Pertussis resurged over the last decade in most countries that replaced the traditional whole-cell pertussis vaccines (wP) by the less reactogenic acellular pertussis vaccines (aP). The aP vaccines induce a Th2-polarized immune response and by a yet unknown mechanism hamper the clearance of Bordetella pertussis from infected nasopharyngeal mucosa. The aP-induced pertussis toxin-neutralizing antibodies effectively prevent the life-threatening pertussis pneumonia in infants, but aP-elicited immunity fails to prevent infection of nasopharyngeal mucosa and transmission of B. pertussis. In contrast, the more reactogenic traditional wP vaccines, alike natural infection, elicit a broad antibody response and trigger a Th1/Th17-polarized T cell immunity. We tackled here the reactogenicity of the conventional wP vaccines by genetic modification of the Fim2 and Fim3-producing B. pertussis strains used for wP vaccine manufacturing. Mutations were introduced into the genomes of vaccine strains (i) to reduce the TLR4 signaling potency of the lipid A of B. pertussis lipooligosaccharide (ΔlgmB), (ii) eliminate the enzymatic (immunosuppressive) activity of the pertussis toxin (PtxS1-R9K/E129G), and (iii) ablate the production of the dermonecrotic toxin (Δdnt). Experimental alum-adjuvanted wP vaccines prepared from such triply modified bacteria exhibited a reduced pyrogenicity in rabbits and a reduced systemic toxicity in mice, while conferring a comparable protection from B. pertussis infection as the unmodified wP vaccine.IMPORTANCEThe occasionally severe adverse reactions associated with some lots of the whole-cell pertussis vaccine (wP) led the industrialized nations to switch to the use of less reactogenic acellular pertussis vaccines that confer shorter-lasting protection. This yielded whooping cough resurgence and large whooping cough outbreaks are currently sweeping throughout European countries, calling for the replacement of the pertussis vaccine component of pediatric hexavaccines by an improved wP vaccine. We show that genetic detoxification of the Bordetella pertussis bacteria used for wP preparation yields a reduced reactogenicity wP vaccine that exhibits a reduced systemic toxicity in mice and reduced pyrogenicity in rabbits, while retaining high immunogenicity and protective potency in the mouse model of pneumonic infection by B. pertussis. This result has now been confirmed in a nonhuman primate model of B. pertussis infection of olive baboons, paving the way for the development of the next generation of pertussis vaccines.
- Klíčová slova
- Bordetella pertussis, dermonecrotic toxin, immunogenicity, lipooligosaccharide, pertussis toxin, protection, reactogenicity, whole-cell vaccine, whooping cough,
- MeSH
- Bordetella pertussis * imunologie genetika MeSH
- faktory virulence rodu Bordetella genetika imunologie MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- pertuse * prevence a kontrola imunologie MeSH
- pertusová vakcína * imunologie genetika aplikace a dávkování MeSH
- proteiny fimbrií genetika imunologie MeSH
- protilátky bakteriální krev MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny bakteriální MeSH
- faktory virulence rodu Bordetella MeSH
- fim2 protein, Bordetella MeSH Prohlížeč
- fim3 protein, Bordetella MeSH Prohlížeč
- pertusová vakcína * MeSH
- proteiny fimbrií MeSH
- protilátky bakteriální MeSH
BACKGROUND: Vaccination against 5 prominent meningococcal serogroups (A/B/C/W/Y) is necessary for broad disease protection. We report immunopersistence through 4 years after a 2-dose (6-month interval) pentavalent MenABCWY primary vaccine series and safety and immunogenicity of a booster administered 4 years after primary vaccination. METHODS: This randomized, active-controlled, observer-blinded study was conducted in the United States and Europe. In stage 1, healthy MenACWY vaccine-naive or -experienced 10- to 25-year-olds were randomized 1:2 to receive MenABCWY and placebo or MenB-fHbp and MenACWY-CRM. Eligible participants were randomly selected to participate in stage 2, which was an open-label immunopersistence and booster extension. Immunogenicity was assessed through serum bactericidal antibody using human complement (hSBA) assays with serogroups A/C/W/Y (MenA/C/W/Y) and 4 primary serogroup B (MenB) test strains. Immunogenicity endpoints included hSBA seroprotection rates through 48 months after primary vaccination and 1 month after the booster. Safety endpoints included booster reactogenicity events and adverse events (AEs). RESULTS: Of 1379 eligible participants, 353 entered stage 2; 242 completed the 48-month blood draw after primary vaccination and 240 completed the booster vaccination phase. MenA/C/W/Y seroprotection rates remained high for 4 years following a 2-dose MenABCWY primary series (MenACWY-naive, 62.0 %-100.0 %; MenACWY-experienced, 98.7 %-100.0 %) and trended higher than those after a single MenACWY-CRM dose (MenACWY-naive, 38.1 %-95.2 %; MenACWY-experienced, 89.7 %-100.0 %). Corresponding seroprotection rates against MenB remained stable and generally higher than baseline (MenABCWY, 18.2 %-36.6 %; MenB-fHbp, 16.2 %-31.9 % across strains). Following a booster, seroprotection rates against all 5 serogroups were ≥ 93.8 % across groups. Most booster dose reactogenicity events were mild or moderate in severity, and AEs were infrequent. CONCLUSIONS: Immune responses remained high for MenA/C/W/Y and above baseline for MenB through 4 years after the MenABCWY primary series, with robust responses for all 5 serogroups observed following a booster. The MenABCWY booster had an acceptable safety and tolerability profile consistent with the primary series. NCT03135834.
- Klíčová slova
- Immunogenicity, Invasive meningococcal disease, MenABCWY vaccine, Safety, Tolerability,
- MeSH
- dítě MeSH
- dospělí MeSH
- imunogenicita vakcíny MeSH
- komplement imunologie MeSH
- lidé MeSH
- meningokokové infekce * prevence a kontrola imunologie MeSH
- meningokokové vakcíny * imunologie škodlivé účinky aplikace a dávkování MeSH
- mladiství MeSH
- mladý dospělý MeSH
- Neisseria meningitidis imunologie MeSH
- protilátky bakteriální * krev MeSH
- sekundární imunizace * metody MeSH
- séroskupina MeSH
- vakcíny konjugované imunologie aplikace a dávkování škodlivé účinky MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
- Geografické názvy
- Evropa MeSH
- Spojené státy americké MeSH
- Názvy látek
- komplement MeSH
- MenACWY MeSH Prohlížeč
- meningokokové vakcíny * MeSH
- protilátky bakteriální * MeSH
- vakcíny konjugované MeSH
Whole-cell pertussis (wP) vaccines introduced in the 1940s led to a dramatic reduction of pertussis incidence and are still widely used in low- and middle-income countries (LMICs) worldwide. The reactogenicity of wP vaccines resulted in reduced public acceptance, which drove the development and introduction of acellular pertussis (aP) vaccines in high-income countries in the 1990s. Increased incidence of pertussis disease has been observed in high-income countries following the introduction of aP vaccines despite near universal rates of pediatric vaccination. These increases are attributed to the reduced protection against colonization, carriage, and transmission as well as reduced duration of immunity conferred by aP vaccines relative to the wP vaccines they replaced. A reduced reactogenicity whole-cell pertussis (RRwP) vaccine was recently developed with the goal of achieving the same protection as conferred by wP vaccination but with an improved safety profile, which may benefit countries in which wP vaccines are still in routine use. In this study, we tested the RRwP vaccine in a baboon model of pertussis infection. We found that the RRwP vaccine induced comparable cellular and humoral immune responses and comparable protection following challenge relative to the wP vaccine, while significantly reducing injection-site reactogenicity.IMPORTANCEThe World Health Organization (WHO) recommended in 2015 that countries administering wP vaccines in their national vaccine programs should continue to do so, and that switching to aP vaccines for primary infant immunization should only be considered if periodic booster vaccinations and/or maternal immunization could be assured and sustained in their national immunization schedules (WHO, Vaccine 34:1423-1425, 2016, https://doi.org/10.1016/j.vaccine.2015.10.136). Due to the considerably higher cost of aP vaccines and the larger number of doses required, most LMICs continue to use wP vaccines. The development and introduction of a wP vaccine that induces fewer adverse events without sacrificing protection would significantly benefit countries in which wP vaccines are still in routine use. The results of this study indicate this desirable goal may be achievable.
- Klíčová slova
- baboon model, pertussis, whole cell vaccines,
- MeSH
- Bordetella pertussis imunologie MeSH
- modely nemocí na zvířatech MeSH
- Papio * imunologie MeSH
- pertuse * prevence a kontrola imunologie MeSH
- pertusová vakcína * imunologie aplikace a dávkování MeSH
- protilátky bakteriální krev MeSH
- vakcinace MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- pertusová vakcína * MeSH
- protilátky bakteriální MeSH
The leishmaniases are globally important parasitic diseases for which no human vaccines are currently available. To facilitate vaccine development, we conducted an open-label observational study to establish a controlled human infection model (CHIM) of sand fly-transmitted cutaneous leishmaniasis (CL) caused by Leishmania major. Between 24 January and 12 August 2022, we exposed 14 participants to L. major-infected Phlebotomus duboscqi. The primary objective was to demonstrate effectiveness of lesion development (take rate) and safety (absence of CL lesion at 12 months). Secondary and exploratory objectives included rate of lesion development, parasite load and analysis of local immune responses by immunohistology and spatial transcriptomics. Lesion development was terminated by therapeutic biopsy (between days 14 and 42 after bite) in ten participants with clinically compatible lesions, one of which was not confirmed by parasite detection. We estimated an overall take rate for CL development of 64% (9/14). Two of ten participants had one and one of ten participants had two lesion recurrences 4-8 months after biopsy that were treated successfully with cryotherapy. No severe or serious adverse events were recorded, but as expected, scarring due to a combination of CL and the biopsy procedure was evident. All participants were lesion free at >12-month follow-up. We provide the first comprehensive map of immune cell distribution and cytokine/chemokine expression in human CL lesions, revealing discrete immune niches. This CHIM offers opportunities for vaccine candidate selection based on human efficacy data and for a greater understanding of immune-mediated pathology. ClinicalTrials.gov identifier: NCT04512742 .
- MeSH
- dospělí MeSH
- Leishmania major * imunologie MeSH
- leishmanióza kožní * imunologie parazitologie patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- parazitární zátěž MeSH
- Phlebotomus parazitologie imunologie MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
BACKGROUND: Meningococcal serogroups A, B, C, W, and Y cause nearly all meningococcal disease, and comprehensive protection requires vaccination against all five serogroups. We aimed to assess the immunogenicity and safety of a pentavalent MenABCWY vaccine comprising two licensed vaccines-meningococcal serogroup B-factor H binding protein vaccine (MenB-FHbp) and a quadrivalent meningococcal serogroup ACWY tetanus toxoid conjugate vaccine (MenACWY-TT)-compared with two doses of MenB-FHbp and a single dose of quadrivalent meningococcal serogroup ACWY CRM197-conjugate vaccine (MenACWY-CRM) as the active control. We previously reported the primary safety and immunogenicity data relating to the two-dose MenB-FHbp schedule. Here we report secondary outcomes and ad-hoc analyses relating to MenABCWY immunogenicity and safety. METHODS: We did an observer-blind, active-controlled trial at 68 sites in the USA, Czech Republic, Finland, and Poland. Healthy individuals (aged 10-25 years) who had or had not previously received a MenACWY vaccine were randomly assigned (1:2) using an interactive voice or web-based response system, stratified by previous receipt of a MenACWY vaccine, to receive 0·5 mL of MenABCWY (months 0 and 6) and placebo (month 0) or MenB-FHbp (months 0 and 6) and MenACWY-CRM (month 0) via intramuscular injection into the upper deltoid. All individuals were masked to group allocation, except staff involved in vaccine dispensation, preparation, and administration; and protocol adherence. Endpoints for serogroups A, C, W, and Y included the proportion of participants who achieved at least a four-fold increase in serum bactericidal antibody using human complement (hSBA) titres between baseline and 1 month after each vaccination. For serogroup B, secondary endpoints included the proportion of participants who achieved at least a four-fold increase in hSBA titres from baseline for each of four primary test strains and the proportion of participants who achieved titres of at least the lower limit of quantitation against all four test strains combined at 1 month after the second dose. Endpoints for serogroups A, C, W, and Y were assessed in the modified intent-to-treat (mITT) population, which included all randomly assigned participants who received at least one vaccine dose and had at least one valid and determinate MenB or serogroup A, C, W, or Y assay result before vaccination up to 1 month after the second dose, assessed in ACWY-experienced and ACWY-naive participants separately. Secondary endpoints for serogroup B were analysed in the evaluable immunogenicity population, which included all participants in the mITT population who were randomly assigned to the group of interest, received all investigational products as randomly assigned, had blood drawn for assay testing within the required time frames, had at least one valid and determinate MenB assay result after the second vaccination, and had no important protocol deviations; outcomes were assessed in both ACWY-experienced and ACWY-naive populations combined. Non-inferiority of MenABCWY to MenACWY-CRM and MenB-FHbp was determined using a -10% non-inferiority margin for these endpoints. Reactogenicity and adverse events were assessed among all participants who received at least one vaccine dose and who had available safety data. This trial is registered with Clinicaltrials.gov, NCT03135834, and is complete. FINDINGS: Between April 24 and November 10, 2017, 1610 participants (809 MenACWY-naive; 801 MenACWY-experienced) were randomly assigned: 544 to receive MenABCWY and placebo (n=272 MenACWY-naive; n=272 MenACWY-experienced) and 1066 to receive MenB-FHbp and MenACWY-CRM (n=537 MenACWY-naive; n=529 MenACWY-experienced). Among MenACWY-naive or MenACWY-experienced MenABCWY recipients, 75·5% (95% CI 69·8-80·6; 194 of 257; serogroup C) to 96·9% (94·1-98·7; 254 of 262; serogroup A) and 93·0% (88·4-96·2; 174 of 187; serogroup Y) to 97·4% (94·4-99·0; 224 of 230; serogroup W) achieved at least four-fold increases in hSBA titres against serogroups ACWY after dose 1 or 2, respectively, in ad-hoc analyses. Additionally, 75·8% (71·5-79·8; 320 of 422) to 94·7% (92·1-96·7; 396 of 418) of MenABCWY and 67·4% (64·1-70·6; 563 of 835) to 95·0% (93·3-96·4; 782 of 823) of MenB-FHbp recipients achieved at least four-fold increases in hSBA titres against MenB strains after dose 2 in secondary analyses; 79·9% (334 of 418; 75·7-83·6) and 74·3% (71·2-77·3; 605 of 814), respectively, achieved composite responses. MenABCWY was non-inferior to MenACWY-CRM (single dose) and to MenB-FHbp in ad-hoc analyses based on the proportion of participants with at least a four-fold increase in hSBA titres from baseline and (for MenB-FHbp only) composite responses. Reactogenicity events after vaccination were similarly frequent across groups, were mostly mild or moderate, and were unaffected by MenACWY experience. No adverse events causing withdrawals were related to the investigational product. Serious adverse events were reported in four (1·5%; 0·4-3·7) MenACWY-naive individuals in the MenABCWY group versus six (2·2%; 0·8-4·8) among MenACWY-experienced individuals in the MenABCWY group and 14 (1·3%; 0·7-2·2) in the active control group (MenACWY-experienced and MenACWY-naive individuals combined); none of these were considered related to the investigational product. INTERPRETATION: MenABCWY immune responses were robust and non-inferior to MenACWY-CRM and MenB-FHbp administered separately, and MenABCWY was well tolerated. The favourable benefit-risk profile supports further MenABCWY evaluation as a simplified schedule compared with current adolescent meningococcal vaccination programmes. FUNDING: Pfizer.
- MeSH
- imunogenicita vakcíny MeSH
- kombinované vakcíny MeSH
- lidé MeSH
- meningokokové infekce * prevence a kontrola farmakoterapie MeSH
- meningokokové vakcíny * MeSH
- mladiství MeSH
- mladý dospělý MeSH
- Neisseria meningitidis séroskupiny B * MeSH
- Neisseria meningitidis * MeSH
- protilátky bakteriální MeSH
- vakcinace metody MeSH
- vakcíny konjugované MeSH
- Check Tag
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
- Názvy látek
- kombinované vakcíny MeSH
- meningokokové vakcíny * MeSH
- protilátky bakteriální MeSH
- vakcíny konjugované MeSH
Route of vaccine delivery can greatly impact the immunogenicity, efficacy and safety of the vaccine. Four groups of piglets were immunised transdermally (t.d.), intradermally (i.d.) or intramuscularly (i.m.) with the same doses of antigen in combination with a water-in-oil-in-water emulsion adjuvant Montanide™ ISA 201 VG or with a microemulsion adjuvant Montanide™ IMS 1313 VG N ST (Seppic, France). The last group was left without vaccination as a control group. All animals were subsequently exposed to the infection induced by Actinobacillus pleuropneumoniae (App). The immune response was evaluated with respect to the intensity of systemic and mucosal antibody formation, their isotype characterisation and rate of cell-mediated immunity. These findings were compared with the intensity of adverse local reactions and level of protection in experimental challenge. Monitoring of the local reaction at the injection site after each administration showed that microemulsion adjuvant IMS 1313 was less reactogenic than the water-in-oil-in-water emulsion ISA 201. In terms of efficacy, both dermal administrations were less immunogenic than the i.m route. The i.m. injection induced higher anti-App9 IgG and IgM titres. Nevertheless, IgG1 and IgG2 isotypes analysis revealed a close immunological profile between i.m. and i.d. routes. The concentration of IFN-γ from peripheral blood after in vitro restimulation with the specific antigen was only increased in the i.m. group at the day of challenge (D35) and two weeks after (D49). Interestingly, the smallest gross pulmonary lesions were observed in the i.d. vaccinated group (3.4%) compared to the control group (39.4%) and to groups with other routes of administration. Taken together, these results suggest that i.d. administration of vaccines is a promising approach. Even the i.d. vaccine was more reactogenic and slightly less immunogenic than the i.m. vaccine, its protection effectiveness seemed to be superior.
- Klíčová slova
- Actinobacillus pleuropneumoniae, Intradermal, Pig, Protection, Vaccine,
- MeSH
- Actinobacillus pleuropneumoniae * MeSH
- adjuvancia imunologická MeSH
- aplikace kožní MeSH
- bakteriální vakcíny MeSH
- emulze MeSH
- imunita MeSH
- imunizace veterinární metody MeSH
- imunoglobulin G MeSH
- infekce bakteriemi rodu Actinobacillus * prevence a kontrola veterinární MeSH
- nemoci prasat * prevence a kontrola MeSH
- prasata MeSH
- protilátky bakteriální MeSH
- vakcinace metody veterinární MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adjuvancia imunologická MeSH
- bakteriální vakcíny MeSH
- emulze MeSH
- imunoglobulin G MeSH
- protilátky bakteriální MeSH
BACKGROUND: Side effects emerging after COVID-19 vaccines may adversely impact public confidence in vaccines. Therefore, this study was designed to explore the short-term side effects of COVID-19 vaccines as a part of the COVID-19 Vaccines Safety Tracking (CoVaST) study. METHODS: A cross-sectional survey-based study was carried out to collect data from healthcare workers (HCWs) in Saudi Arabia. The study was initiated between June and December 2021. A validated questionnaire was used in this study consisting of four categories, including demographic characteristics and medical anamnesis of the participants, COVID-19-associated anamnesis, and side effects of vaccine uptake. RESULTS: The study included 1039 participants, of which 70.2% were females, and their median age was 34. About 82.9% and 52.3% of the participants reported a minimum of both one local and systemic side effect, respectively. Females, young participants (≤34 years old), and non-obese participants had more potential to disclose post-vaccination side effects than their counterparts. Heterologous schedules and viral vector-based vaccines were linked with a greater rate of systemic side effects, whereas homologous vaccination schedules and mRNA-based vaccines were linked with a greater rate of local side effects. CONCLUSION: Future studies on COVID-19 vaccines should focus on the role of BMI, previous infection, and vaccination schedule in terms of vaccine safety and reactogenicity.
- Klíčová slova
- COVID-19 vaccines, CoVaST, Saudi Arabia, drug-related side effects and adverse reactions, health personnel,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The MenB-FHbp vaccine is licensed to prevent meningococcal serogroup B disease on either a 2-dose (0, 6 months) or 3-dose (0, 1-2, 6 months) series. This phase 3 study further assessed the immunogenicity and safety of the 2-dose MenB-FHbp schedule. METHODS: Subjects 10-25 years of age received MenB-FHbp (months 0, 6) and the quadrivalent meningococcal conjugate vaccine MenACWY-CRM (month 0). Primary immunogenicity endpoints included percentages of subjects achieving ≥ 4-fold increases from baseline in serum bactericidal antibody using human complement (hSBA) titers for 4 diverse, vaccine-heterologous primary serogroup B test strains and titers ≥ lower limit of quantitation (LLOQ; 1:8 or 1:16) for all 4 primary strains combined (composite response) after dose 2; a titer ≥ 1:4 is the accepted correlate of protection. Percentages of participants with hSBA titers ≥ LLOQ for 10 additional vaccine-heterologous strains were also assessed; positive predictive values of primary strain responses for secondary strain responses were determined. Safety was assessed. RESULTS: Overall, 1057 subjects received dose 1 and 946 received dose 2 of MenB-FHbp. Percentages of participants achieving ≥ 4-fold increases in hSBA titers against each primary strain after dose 2 ranged from 67.4% to 95.0% and the composite response was 74.3%. Primary strain responses were highly predictive of secondary strain responses. Most reactogenicity events were mild-to-moderate in severity and did not lead to withdrawal from the study. Adverse events (AEs) considered by the investigator to be related to vaccination occurred in 4.2% (44/1057) of subjects, and there were no serious AEs or newly diagnosed chronic medical conditions considered related to vaccination. CONCLUSIONS: MenB-FHbp administered at 0, 6 months was well tolerated and induced protective bactericidal antibody responses against diverse serogroup B strains. Findings provide further support for the continued use of MenB-FHbp on a 2-dose schedule in this population.
- Klíčová slova
- 2-dose, Immunogenicity, MenB-FHbp, Meningococcal serogroup B, Safety,
- MeSH
- lidé MeSH
- meningokokové infekce * prevence a kontrola MeSH
- meningokokové vakcíny * škodlivé účinky MeSH
- mladiství MeSH
- mladý dospělý MeSH
- Neisseria meningitidis séroskupiny B * MeSH
- Neisseria meningitidis * MeSH
- protilátky bakteriální MeSH
- séroskupina MeSH
- vakcinace MeSH
- Check Tag
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky, fáze III MeSH
- práce podpořená grantem MeSH
- Názvy látek
- meningokokové vakcíny * MeSH
- protilátky bakteriální MeSH
BACKGROUND: Optimization of COVID-19 vaccination rate among healthcare personnel is of utmost priority to secure provision of uninterrupted care and to protect the most vulnerable patients. This study, as part of the global CoVaST project, aimed to assess the occurrence of short-term adverse events (SRAEs) of two most administered COVID-19 vaccines, mRNA-based (Pfizer-BioNTech and Moderna) and viral vector-based (AstraZeneca) in healthcare sector workers (HWs). METHODS: A cross-sectional survey-based study was carried out for the first time among 317 Polish healthcare sector personnel and medical students using a validated and pre-tested questionnaire. The online questionnaire included 25 pre-tested, validated questions concerning demographic data, medical parameters, COVID-19-related anamneses, and local or systemic reactions (reactogenicity) associated with COVID-19 vaccination. Descriptive statistics, inferential tests and binary logistic regression were performed. RESULTS: Out of the 247 participating HWs, 79.8% were females, and 77.5% received mRNA-based vaccines, while 24.5% received a viral vector-based vaccine. Cumulatively, 78.9% and 60.7% of the participants reported at least one local and one systemic SRAE respectively, following their COVID-19 first or second dose of vaccine. A wide array of SRAEs was observed, while pain at injection site (76.9%) was the most common local SRAE, and fatigue (46.2%), headache (37.7%), muscle pain (31.6%) were the most common systemic SRAEs. The vast proportion of local (35.2%) and systemic (44.8%) SRAEs subsided up to 1 day after inoculation with both types of vaccines. The mRNA-based vaccine versions seem to cause higher prevalence of local SRAEs, mainly pain within injection site (81.3% vs. 71.7%; p = 0.435), while the viral vector-based vaccine was linked with increased incidents of mild systemic side effects (76.7% vs. 55.3%; p = 0.004) after both doses. Pooled analysis revealed uniform results while comparing the prevalence of SRAEs in HWs as recipients in four central European countries (OR = 2.38; 95% CI = 2.03-2.79). CONCLUSIONS: The study confirmed the safety of commonly administered vaccines against COVID-19, which were associated with mild, self-resolving adverse events. No major vaccine-related incidents were reported which would affect every day functioning, significantly. The younger age group (below 29 y.o.) were associated with an increased risk of adverse events generally. The results enhanced current data regarding COVID-19 vaccination active surveillance in selected occupational groups.
- Klíčová slova
- BTN162 mRNA vaccine, COVID-19, Poland, adverse effects, adverse reactions, cross-sectional study, healthcare workers, pooled analysis, prevalence, vector vaccine,
- Publikační typ
- časopisecké články MeSH