-
Something wrong with this record ?
The choice of embedding media affects image quality, tissue R2* , and susceptibility behaviors in post-mortem brain MR microscopy at 7.0T
P. Dusek, VI. Madai, T. Huelnhagen, E. Bahn, R. Matej, J. Sobesky, T. Niendorf, J. Acosta-Cabronero, J. Wuerfel,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
15-25602A
Czech Ministry of Health - International
Q27/LF1
Charles University - International
Q28/LF1;
Charles University - International
CZ.2.16/3.1.00/24509
OPPK - International
1210251
Helmholtz Alliance ICEMED - International
203147/Z/16/Z
Wellcome - International
NV15-25602A
MZ0
CEP Register
Digital library NLK
Full text - Article
NLK
Medline Complete (EBSCOhost)
from 2012-01-01 to 1 year ago
Wiley Free Content
from 1999 to 5 years ago
PubMed
30506939
DOI
10.1002/mrm.27595
Knihovny.cz E-resources
- MeSH
- Ethers MeSH
- Fluorocarbons MeSH
- Formaldehyde MeSH
- Phosphates MeSH
- Contrast Media MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging instrumentation methods MeSH
- Brain Mapping methods MeSH
- Brain diagnostic imaging pathology MeSH
- Specimen Handling MeSH
- Deuterium Oxide MeSH
- Autopsy instrumentation methods MeSH
- Image Processing, Computer-Assisted MeSH
- Signal-To-Noise Ratio MeSH
- Sepharose chemistry MeSH
- Aged MeSH
- Tissue Embedding instrumentation MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
PURPOSE: The quality and precision of post-mortem MRI microscopy may vary depending on the embedding medium used. To investigate this, our study evaluated the impact of 5 widely used media on: (1) image quality, (2) contrast of high spatial resolution gradient-echo (T1 and T2* -weighted) MR images, (3) effective transverse relaxation rate (R2* ), and (4) quantitative susceptibility measurements (QSM) of post-mortem brain specimens. METHODS: Five formaldehyde-fixed brain slices were scanned using 7.0T MRI in: (1) formaldehyde solution (formalin), (2) phosphate-buffered saline (PBS), (3) deuterium oxide (D2 O), (4) perfluoropolyether (Galden), and (5) agarose gel. SNR and contrast-to-noise ratii (SNR/CNR) were calculated for cortex/white matter (WM) and basal ganglia/WM regions. In addition, median R2* and QSM values were extracted from caudate nucleus, putamen, globus pallidus, WM, and cortical regions. RESULTS: PBS, Galden, and agarose returned higher SNR/CNR compared to formalin and D2 O. Formalin fixation, and its use as embedding medium for scanning, increased tissue R2* . Imaging with agarose, D2 O, and Galden returned lower R2* values than PBS (and formalin). No major QSM offsets were observed, although spatial variance was increased (with respect to R2* behaviors) for formalin and agarose. CONCLUSIONS: Embedding media affect gradient-echo image quality, R2* , and QSM in differing ways. In this study, PBS embedding was identified as the most stable experimental setup, although by a small margin. Agarose and Galden were preferred to formalin or D2 O embedding. Formalin significantly increased R2* causing noisier data and increased QSM variance.
Berlin Ultrahigh Field Facility Berlin Germany
Department of Neurology and Center for Stroke Research Berlin Berlin Germany
Institute of Neuropathology University Medicine Göttingen Göttingen Germany
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20022817
- 003
- CZ-PrNML
- 005
- 20201214124835.0
- 007
- ta
- 008
- 201125s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/mrm.27595 $2 doi
- 035 __
- $a (PubMed)30506939
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Dusek, Petr $u Department of Neurology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Praha, Czech Republic. Department of Radiology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Praha, Czech Republic.
- 245 14
- $a The choice of embedding media affects image quality, tissue R2* , and susceptibility behaviors in post-mortem brain MR microscopy at 7.0T / $c P. Dusek, VI. Madai, T. Huelnhagen, E. Bahn, R. Matej, J. Sobesky, T. Niendorf, J. Acosta-Cabronero, J. Wuerfel,
- 520 9_
- $a PURPOSE: The quality and precision of post-mortem MRI microscopy may vary depending on the embedding medium used. To investigate this, our study evaluated the impact of 5 widely used media on: (1) image quality, (2) contrast of high spatial resolution gradient-echo (T1 and T2* -weighted) MR images, (3) effective transverse relaxation rate (R2* ), and (4) quantitative susceptibility measurements (QSM) of post-mortem brain specimens. METHODS: Five formaldehyde-fixed brain slices were scanned using 7.0T MRI in: (1) formaldehyde solution (formalin), (2) phosphate-buffered saline (PBS), (3) deuterium oxide (D2 O), (4) perfluoropolyether (Galden), and (5) agarose gel. SNR and contrast-to-noise ratii (SNR/CNR) were calculated for cortex/white matter (WM) and basal ganglia/WM regions. In addition, median R2* and QSM values were extracted from caudate nucleus, putamen, globus pallidus, WM, and cortical regions. RESULTS: PBS, Galden, and agarose returned higher SNR/CNR compared to formalin and D2 O. Formalin fixation, and its use as embedding medium for scanning, increased tissue R2* . Imaging with agarose, D2 O, and Galden returned lower R2* values than PBS (and formalin). No major QSM offsets were observed, although spatial variance was increased (with respect to R2* behaviors) for formalin and agarose. CONCLUSIONS: Embedding media affect gradient-echo image quality, R2* , and QSM in differing ways. In this study, PBS embedding was identified as the most stable experimental setup, although by a small margin. Agarose and Galden were preferred to formalin or D2 O embedding. Formalin significantly increased R2* causing noisier data and increased QSM variance.
- 650 _2
- $a senioři $7 D000368
- 650 _2
- $a pitva $x přístrojové vybavení $x metody $7 D001344
- 650 _2
- $a mozek $x diagnostické zobrazování $x patologie $7 D001921
- 650 _2
- $a mapování mozku $x metody $7 D001931
- 650 _2
- $a kontrastní látky $7 D003287
- 650 _2
- $a oxid deuteria $7 D017666
- 650 _2
- $a ethery $7 D004987
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a fluorokarbony $7 D005466
- 650 _2
- $a formaldehyd $7 D005557
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a počítačové zpracování obrazu $7 D007091
- 650 _2
- $a magnetická rezonanční tomografie $x přístrojové vybavení $x metody $7 D008279
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a fosfáty $7 D010710
- 650 _2
- $a sefarosa $x chemie $7 D012685
- 650 _2
- $a poměr signál - šum $7 D059629
- 650 _2
- $a odběr biologického vzorku $7 D013048
- 650 _2
- $a zalévání tkání $x přístrojové vybavení $7 D016610
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Madai, Vince Istvan $u Department of Neurology and Center for Stroke Research Berlin (CSB), Charité-Universitaetsmedizin, Berlin, Germany.
- 700 1_
- $a Huelnhagen, Till $u Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- 700 1_
- $a Bahn, Erik $u Institute of Neuropathology, University Medicine Göttingen, Göttingen, Germany.
- 700 1_
- $a Matej, Radoslav $u Department of Pathology and Molecular Medicine, Thomayer Hospital, Praha, Czech Republic. Department of Pathology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Praha, Czech Republic.
- 700 1_
- $a Sobesky, Jan $u Department of Neurology and Center for Stroke Research Berlin (CSB), Charité-Universitaetsmedizin, Berlin, Germany. Experimental and Clinical Research Center (ECRC), Charité-Universitaetsmedizin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- 700 1_
- $a Niendorf, Thoralf $u Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany. Experimental and Clinical Research Center (ECRC), Charité-Universitaetsmedizin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- 700 1_
- $a Acosta-Cabronero, Julio $u Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, London, United Kingdom. German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
- 700 1_
- $a Wuerfel, Jens $u NeuroCure Clinical Research Center, Charité-Universitaetsmedizin, Berlin, Germany. Medical Imaging Analysis Center AG, Basel, Switzerland. Department of Biomedical Engineering, University Basel, Switzerland.
- 773 0_
- $w MED00003172 $t Magnetic resonance in medicine $x 1522-2594 $g Roč. 81, č. 4 (2019), s. 2688-2701
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30506939 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201214124835 $b ABA008
- 999 __
- $a ok $b bmc $g 1595136 $s 1113493
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 81 $c 4 $d 2688-2701 $e 20181202 $i 1522-2594 $m Magnetic resonance in medicine $n Magn Reson Med $x MED00003172
- GRA __
- $a 15-25602A $p Czech Ministry of Health $2 International
- GRA __
- $a Q27/LF1 $p Charles University $2 International
- GRA __
- $a Q28/LF1; $p Charles University $2 International
- GRA __
- $a CZ.2.16/3.1.00/24509 $p OPPK $2 International
- GRA __
- $a 1210251 $p Helmholtz Alliance ICEMED $2 International
- GRA __
- $a 203147/Z/16/Z $p Wellcome $2 International
- GRA __
- $a NV15-25602A $p MZ0
- LZP __
- $a Pubmed-20201125