Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

High-throughput discovery of genetic determinants of circadian misalignment

T. Zhang, P. Xie, Y. Dong, Z. Liu, F. Zhou, D. Pan, Z. Huang, Q. Zhai, Y. Gu, Q. Wu, N. Tanaka, Y. Obata, A. Bradley, CJ. Lelliott, Sanger Institute Mouse Genetics Project, LMJ. Nutter, C. McKerlie, AM. Flenniken, MF. Champy, T. Sorg, Y. Herault,...

. 2020 ; 16 (1) : e1008577. [pub] 20200113

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20023235

Grantová podpora
MC_U142684171 Medical Research Council - United Kingdom
MC_U142684172 Medical Research Council - United Kingdom
UM1 HG006370 NHGRI NIH HHS - United States
UM1 OD023221 NIH HHS - United States

Circadian systems provide a fitness advantage to organisms by allowing them to adapt to daily changes of environmental cues, such as light/dark cycles. The molecular mechanism underlying the circadian clock has been well characterized. However, how internal circadian clocks are entrained with regular daily light/dark cycles remains unclear. By collecting and analyzing indirect calorimetry (IC) data from more than 2000 wild-type mice available from the International Mouse Phenotyping Consortium (IMPC), we show that the onset time and peak phase of activity and food intake rhythms are reliable parameters for screening defects of circadian misalignment. We developed a machine learning algorithm to quantify these two parameters in our misalignment screen (SyncScreener) with existing datasets and used it to screen 750 mutant mouse lines from five IMPC phenotyping centres. Mutants of five genes (Slc7a11, Rhbdl1, Spop, Ctc1 and Oxtr) were found to be associated with altered patterns of activity or food intake. By further studying the Slc7a11tm1a/tm1a mice, we confirmed its advanced activity phase phenotype in response to a simulated jetlag and skeleton photoperiod stimuli. Disruption of Slc7a11 affected the intercellular communication in the suprachiasmatic nucleus, suggesting a defect in synchronization of clock neurons. Our study has established a systematic phenotype analysis approach that can be used to uncover the mechanism of circadian entrainment in mice.

Cambridge Suda Genomic Resource Center Jiangsu Key Laboratory of Neuropsychiatric Diseases Medical college of Soochow University Suzhou Jiangsu China

Cambridge Suda Genomic Resource Center Jiangsu Key Laboratory of Neuropsychiatric Diseases Medical college of Soochow University Suzhou Jiangsu China State Key Laboratory of Radiation Medicine and Prevention Medical college of Soochow University Suzhou China

CELPHEDIA PHENOMIN Institut Clinique de la Souris Illkirch France

College of Veterinary Medicine Seoul National University and Korea Mouse Phenotyping Center Seoul Republic of Korea

Cyrus Tang Hematology Center Collaborative Innovation Center of Hematology Soochow University Suzhou China State Key Laboratory of Radiation Medicine and Prevention Medical college of Soochow University Suzhou China

Czech Centre for Phenogenomics Institute of Molecular Genetics of the Czech Academy of Sciences Vestec Czech Republic

Department of Physiology University of Texas Southwestern Medical Center Dallas Texas United States of America

European Molecular Biology Laboratory European Bioinformatics Institute Hinxton United Kingdom

German Mouse Clinic Institute of Experimental Genetics Helmholtz Zentrum München German Research Center for Environmental Health Munich Germany

German Mouse Clinic Institute of Experimental Genetics Helmholtz Zentrum München German Research Center for Environmental Health Munich Germany Czech Centre for Phenogenomics Institute of Molecular Genetics of the Czech Academy of Sciences Vestec Czech Republic

German Mouse Clinic Institute of Experimental Genetics Helmholtz Zentrum München German Research Center for Environmental Health Munich Germany Czech Centre for Phenogenomics Institute of Molecular Genetics of the Czech Academy of Sciences Vestec Czech Republic German Center for Diabetes Research Neuherberg Germany

Medical Research Council Harwell Institute Harwell United Kingdom

National Laboratory Animal Center National Applied Research Laboratories Taipei Taiwan

RIKEN BioResource Center Tsukuba Japan

School of Medicine and Dentistry Queen Mary University of London London United Kingdom

School of Medicine and Mouse Biology Program University of California Davis California United States of America

SKL of Pharmaceutical Biotechnology and Model Animal Research Center Collaborative Innovation Center for Genetics and Development Nanjing Biomedical Research Institute Nanjing University Nanjing China

The Centre for Phenogenomics Toronto Canada

The Wellcome Trust Sanger Institute Wellcome Genome Campus Hinxton United Kingdom

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20023235
003      
CZ-PrNML
005      
20201214125540.0
007      
ta
008      
201125s2020 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pgen.1008577 $2 doi
035    __
$a (PubMed)31929527
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Zhang, Tao $u Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China.
245    10
$a High-throughput discovery of genetic determinants of circadian misalignment / $c T. Zhang, P. Xie, Y. Dong, Z. Liu, F. Zhou, D. Pan, Z. Huang, Q. Zhai, Y. Gu, Q. Wu, N. Tanaka, Y. Obata, A. Bradley, CJ. Lelliott, Sanger Institute Mouse Genetics Project, LMJ. Nutter, C. McKerlie, AM. Flenniken, MF. Champy, T. Sorg, Y. Herault, MH. Angelis, VG. Durner, AM. Mallon, SDM. Brown, T. Meehan, HE. Parkinson, D. Smedley, KCK. Lloyd, J. Yan, X. Gao, JK. Seong, CL. Wang, R. Sedlacek, Y. Liu, J. Rozman, L. Yang, Y. Xu,
520    9_
$a Circadian systems provide a fitness advantage to organisms by allowing them to adapt to daily changes of environmental cues, such as light/dark cycles. The molecular mechanism underlying the circadian clock has been well characterized. However, how internal circadian clocks are entrained with regular daily light/dark cycles remains unclear. By collecting and analyzing indirect calorimetry (IC) data from more than 2000 wild-type mice available from the International Mouse Phenotyping Consortium (IMPC), we show that the onset time and peak phase of activity and food intake rhythms are reliable parameters for screening defects of circadian misalignment. We developed a machine learning algorithm to quantify these two parameters in our misalignment screen (SyncScreener) with existing datasets and used it to screen 750 mutant mouse lines from five IMPC phenotyping centres. Mutants of five genes (Slc7a11, Rhbdl1, Spop, Ctc1 and Oxtr) were found to be associated with altered patterns of activity or food intake. By further studying the Slc7a11tm1a/tm1a mice, we confirmed its advanced activity phase phenotype in response to a simulated jetlag and skeleton photoperiod stimuli. Disruption of Slc7a11 affected the intercellular communication in the suprachiasmatic nucleus, suggesting a defect in synchronization of clock neurons. Our study has established a systematic phenotype analysis approach that can be used to uncover the mechanism of circadian entrainment in mice.
650    _2
$a transportní systém aminokyselin y+ $x genetika $7 D027182
650    _2
$a zvířata $7 D000818
650    _2
$a cirkadiánní rytmus $x genetika $7 D002940
650    _2
$a strojové učení $7 D000069550
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a myši $7 D051379
650    _2
$a myši inbrední C57BL $7 D008810
650    _2
$a mutace $7 D009154
650    _2
$a receptory oxytocinu $x genetika $7 D018045
650    _2
$a represorové proteiny $x genetika $7 D012097
650    _2
$a serinové endopeptidasy $x genetika $7 D012697
650    _2
$a proteiny vázající telomery $x genetika $7 D034501
650    _2
$a komplexy ubikvitinligas $x genetika $7 D043743
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Xie, Pancheng $u Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China.
700    1_
$a Dong, Yingying $u Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China.
700    1_
$a Liu, Zhiwei $u Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China.
700    1_
$a Zhou, Fei $u Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China.
700    1_
$a Pan, Dejing $u Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China.
700    1_
$a Huang, Zhengyun $u Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China.
700    1_
$a Zhai, Qiaocheng $u Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China.
700    1_
$a Gu, Yue $u Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China.
700    1_
$a Wu, Qingyu $u Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China. State Key Laboratory of Radiation Medicine and Prevention, Medical college of Soochow University, Suzhou, China.
700    1_
$a Tanaka, Nobuhiko $u RIKEN BioResource Center, Tsukuba, Japan.
700    1_
$a Obata, Yuichi $u RIKEN BioResource Center, Tsukuba, Japan.
700    1_
$a Bradley, Allan $u The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom.
700    1_
$a Lelliott, Christopher J $u The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom.
700    1_
$a Nutter, Lauryl M J $u The Centre for Phenogenomics, Toronto, Canada.
700    1_
$a McKerlie, Colin $u The Centre for Phenogenomics, Toronto, Canada.
700    1_
$a Flenniken, Ann M $u The Centre for Phenogenomics, Toronto, Canada.
700    1_
$a Champy, Marie-France $u CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Illkirch, France.
700    1_
$a Sorg, Tania $u CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Illkirch, France.
700    1_
$a Herault, Yann $u CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Illkirch, France.
700    1_
$a Angelis, Martin Hrabe De $u German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany. Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic.
700    1_
$a Durner, Valerie Gailus $u German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany.
700    1_
$a Mallon, Ann-Marie $u Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, United Kingdom.
700    1_
$a Brown, Steve D M $u Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, United Kingdom.
700    1_
$a Meehan, Terry $u European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom.
700    1_
$a Parkinson, Helen E $u European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom.
700    1_
$a Smedley, Damian $u School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
700    1_
$a Lloyd, K C Kent $u School of Medicine and Mouse Biology Program, University of California, Davis, California, United States of America.
700    1_
$a Yan, Jun $u SKL of Pharmaceutical Biotechnology and Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China.
700    1_
$a Gao, Xiang $u SKL of Pharmaceutical Biotechnology and Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China.
700    1_
$a Seong, Je Kyung $u College of Veterinary Medicine, Seoul National University, and Korea Mouse Phenotyping Center, Seoul, Republic of Korea.
700    1_
$a Wang, Chi-Kuang Leo $u National Laboratory Animal Center, National Applied Research Laboratories (NARLabs), Taipei, Taiwan.
700    1_
$a Sedlacek, Radislav $u Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic.
700    1_
$a Liu, Yi $u Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America.
700    1_
$a Rozman, Jan $u German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany. Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic. German Center for Diabetes Research (DZD), Neuherberg, Germany.
700    1_
$a Yang, Ling $u Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China.
700    1_
$a Xu, Ying $u Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China. State Key Laboratory of Radiation Medicine and Prevention, Medical college of Soochow University, Suzhou, China.
710    2_
$a Sanger Institute Mouse Genetics Project
773    0_
$w MED00008920 $t PLoS genetics $x 1553-7404 $g Roč. 16, č. 1 (2020), s. e1008577
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31929527 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201214125539 $b ABA008
999    __
$a ok $b bmc $g 1595554 $s 1113911
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 16 $c 1 $d e1008577 $e 20200113 $i 1553-7404 $m PLoS genetics $n PLoS Genet $x MED00008920
GRA    __
$a MC_U142684171 $p Medical Research Council $2 United Kingdom
GRA    __
$a MC_U142684172 $p Medical Research Council $2 United Kingdom
GRA    __
$a UM1 HG006370 $p NHGRI NIH HHS $2 United States
GRA    __
$a UM1 OD023221 $p NIH HHS $2 United States
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...