-
Je něco špatně v tomto záznamu ?
High-throughput discovery of genetic determinants of circadian misalignment
T. Zhang, P. Xie, Y. Dong, Z. Liu, F. Zhou, D. Pan, Z. Huang, Q. Zhai, Y. Gu, Q. Wu, N. Tanaka, Y. Obata, A. Bradley, CJ. Lelliott, Sanger Institute Mouse Genetics Project, LMJ. Nutter, C. McKerlie, AM. Flenniken, MF. Champy, T. Sorg, Y. Herault,...
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
MC_U142684171
Medical Research Council - United Kingdom
MC_U142684172
Medical Research Council - United Kingdom
UM1 HG006370
NHGRI NIH HHS - United States
UM1 OD023221
NIH HHS - United States
NLK
Directory of Open Access Journals
od 2005
Free Medical Journals
od 2005
Public Library of Science (PLoS)
od 2005-07-01
PubMed Central
od 2005
Europe PubMed Central
od 2005
ProQuest Central
od 2005-07-01
Open Access Digital Library
od 2005-07-01
Open Access Digital Library
od 2005-01-01
Open Access Digital Library
od 2005-01-01
Medline Complete (EBSCOhost)
od 2005-07-01
Health & Medicine (ProQuest)
od 2005-07-01
- MeSH
- cirkadiánní rytmus genetika MeSH
- komplexy ubikvitinligas genetika MeSH
- mutace MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- proteiny vázající telomery genetika MeSH
- receptory oxytocinu genetika MeSH
- represorové proteiny genetika MeSH
- serinové endopeptidasy genetika MeSH
- strojové učení MeSH
- transportní systém aminokyselin y+ genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Circadian systems provide a fitness advantage to organisms by allowing them to adapt to daily changes of environmental cues, such as light/dark cycles. The molecular mechanism underlying the circadian clock has been well characterized. However, how internal circadian clocks are entrained with regular daily light/dark cycles remains unclear. By collecting and analyzing indirect calorimetry (IC) data from more than 2000 wild-type mice available from the International Mouse Phenotyping Consortium (IMPC), we show that the onset time and peak phase of activity and food intake rhythms are reliable parameters for screening defects of circadian misalignment. We developed a machine learning algorithm to quantify these two parameters in our misalignment screen (SyncScreener) with existing datasets and used it to screen 750 mutant mouse lines from five IMPC phenotyping centres. Mutants of five genes (Slc7a11, Rhbdl1, Spop, Ctc1 and Oxtr) were found to be associated with altered patterns of activity or food intake. By further studying the Slc7a11tm1a/tm1a mice, we confirmed its advanced activity phase phenotype in response to a simulated jetlag and skeleton photoperiod stimuli. Disruption of Slc7a11 affected the intercellular communication in the suprachiasmatic nucleus, suggesting a defect in synchronization of clock neurons. Our study has established a systematic phenotype analysis approach that can be used to uncover the mechanism of circadian entrainment in mice.
CELPHEDIA PHENOMIN Institut Clinique de la Souris Illkirch France
European Molecular Biology Laboratory European Bioinformatics Institute Hinxton United Kingdom
Medical Research Council Harwell Institute Harwell United Kingdom
National Laboratory Animal Center National Applied Research Laboratories Taipei Taiwan
RIKEN BioResource Center Tsukuba Japan
School of Medicine and Dentistry Queen Mary University of London London United Kingdom
The Centre for Phenogenomics Toronto Canada
The Wellcome Trust Sanger Institute Wellcome Genome Campus Hinxton United Kingdom
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20023235
- 003
- CZ-PrNML
- 005
- 20201214125540.0
- 007
- ta
- 008
- 201125s2020 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pgen.1008577 $2 doi
- 035 __
- $a (PubMed)31929527
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Zhang, Tao $u Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China.
- 245 10
- $a High-throughput discovery of genetic determinants of circadian misalignment / $c T. Zhang, P. Xie, Y. Dong, Z. Liu, F. Zhou, D. Pan, Z. Huang, Q. Zhai, Y. Gu, Q. Wu, N. Tanaka, Y. Obata, A. Bradley, CJ. Lelliott, Sanger Institute Mouse Genetics Project, LMJ. Nutter, C. McKerlie, AM. Flenniken, MF. Champy, T. Sorg, Y. Herault, MH. Angelis, VG. Durner, AM. Mallon, SDM. Brown, T. Meehan, HE. Parkinson, D. Smedley, KCK. Lloyd, J. Yan, X. Gao, JK. Seong, CL. Wang, R. Sedlacek, Y. Liu, J. Rozman, L. Yang, Y. Xu,
- 520 9_
- $a Circadian systems provide a fitness advantage to organisms by allowing them to adapt to daily changes of environmental cues, such as light/dark cycles. The molecular mechanism underlying the circadian clock has been well characterized. However, how internal circadian clocks are entrained with regular daily light/dark cycles remains unclear. By collecting and analyzing indirect calorimetry (IC) data from more than 2000 wild-type mice available from the International Mouse Phenotyping Consortium (IMPC), we show that the onset time and peak phase of activity and food intake rhythms are reliable parameters for screening defects of circadian misalignment. We developed a machine learning algorithm to quantify these two parameters in our misalignment screen (SyncScreener) with existing datasets and used it to screen 750 mutant mouse lines from five IMPC phenotyping centres. Mutants of five genes (Slc7a11, Rhbdl1, Spop, Ctc1 and Oxtr) were found to be associated with altered patterns of activity or food intake. By further studying the Slc7a11tm1a/tm1a mice, we confirmed its advanced activity phase phenotype in response to a simulated jetlag and skeleton photoperiod stimuli. Disruption of Slc7a11 affected the intercellular communication in the suprachiasmatic nucleus, suggesting a defect in synchronization of clock neurons. Our study has established a systematic phenotype analysis approach that can be used to uncover the mechanism of circadian entrainment in mice.
- 650 _2
- $a transportní systém aminokyselin y+ $x genetika $7 D027182
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a cirkadiánní rytmus $x genetika $7 D002940
- 650 _2
- $a strojové učení $7 D000069550
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a myši inbrední C57BL $7 D008810
- 650 _2
- $a mutace $7 D009154
- 650 _2
- $a receptory oxytocinu $x genetika $7 D018045
- 650 _2
- $a represorové proteiny $x genetika $7 D012097
- 650 _2
- $a serinové endopeptidasy $x genetika $7 D012697
- 650 _2
- $a proteiny vázající telomery $x genetika $7 D034501
- 650 _2
- $a komplexy ubikvitinligas $x genetika $7 D043743
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Xie, Pancheng $u Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China.
- 700 1_
- $a Dong, Yingying $u Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China.
- 700 1_
- $a Liu, Zhiwei $u Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China.
- 700 1_
- $a Zhou, Fei $u Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China.
- 700 1_
- $a Pan, Dejing $u Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China.
- 700 1_
- $a Huang, Zhengyun $u Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China.
- 700 1_
- $a Zhai, Qiaocheng $u Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China.
- 700 1_
- $a Gu, Yue $u Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China.
- 700 1_
- $a Wu, Qingyu $u Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China. State Key Laboratory of Radiation Medicine and Prevention, Medical college of Soochow University, Suzhou, China.
- 700 1_
- $a Tanaka, Nobuhiko $u RIKEN BioResource Center, Tsukuba, Japan.
- 700 1_
- $a Obata, Yuichi $u RIKEN BioResource Center, Tsukuba, Japan.
- 700 1_
- $a Bradley, Allan $u The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom.
- 700 1_
- $a Lelliott, Christopher J $u The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom.
- 700 1_
- $a Nutter, Lauryl M J $u The Centre for Phenogenomics, Toronto, Canada.
- 700 1_
- $a McKerlie, Colin $u The Centre for Phenogenomics, Toronto, Canada.
- 700 1_
- $a Flenniken, Ann M $u The Centre for Phenogenomics, Toronto, Canada.
- 700 1_
- $a Champy, Marie-France $u CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Illkirch, France.
- 700 1_
- $a Sorg, Tania $u CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Illkirch, France.
- 700 1_
- $a Herault, Yann $u CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Illkirch, France.
- 700 1_
- $a Angelis, Martin Hrabe De $u German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany. Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic.
- 700 1_
- $a Durner, Valerie Gailus $u German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany.
- 700 1_
- $a Mallon, Ann-Marie $u Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, United Kingdom.
- 700 1_
- $a Brown, Steve D M $u Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, United Kingdom.
- 700 1_
- $a Meehan, Terry $u European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom.
- 700 1_
- $a Parkinson, Helen E $u European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom.
- 700 1_
- $a Smedley, Damian $u School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
- 700 1_
- $a Lloyd, K C Kent $u School of Medicine and Mouse Biology Program, University of California, Davis, California, United States of America.
- 700 1_
- $a Yan, Jun $u SKL of Pharmaceutical Biotechnology and Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China.
- 700 1_
- $a Gao, Xiang $u SKL of Pharmaceutical Biotechnology and Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China.
- 700 1_
- $a Seong, Je Kyung $u College of Veterinary Medicine, Seoul National University, and Korea Mouse Phenotyping Center, Seoul, Republic of Korea.
- 700 1_
- $a Wang, Chi-Kuang Leo $u National Laboratory Animal Center, National Applied Research Laboratories (NARLabs), Taipei, Taiwan.
- 700 1_
- $a Sedlacek, Radislav $u Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic.
- 700 1_
- $a Liu, Yi $u Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America.
- 700 1_
- $a Rozman, Jan $u German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany. Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic. German Center for Diabetes Research (DZD), Neuherberg, Germany.
- 700 1_
- $a Yang, Ling $u Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China.
- 700 1_
- $a Xu, Ying $u Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China. State Key Laboratory of Radiation Medicine and Prevention, Medical college of Soochow University, Suzhou, China.
- 710 2_
- $a Sanger Institute Mouse Genetics Project
- 773 0_
- $w MED00008920 $t PLoS genetics $x 1553-7404 $g Roč. 16, č. 1 (2020), s. e1008577
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31929527 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201214125539 $b ABA008
- 999 __
- $a ok $b bmc $g 1595554 $s 1113911
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 16 $c 1 $d e1008577 $e 20200113 $i 1553-7404 $m PLoS genetics $n PLoS Genet $x MED00008920
- GRA __
- $a MC_U142684171 $p Medical Research Council $2 United Kingdom
- GRA __
- $a MC_U142684172 $p Medical Research Council $2 United Kingdom
- GRA __
- $a UM1 HG006370 $p NHGRI NIH HHS $2 United States
- GRA __
- $a UM1 OD023221 $p NIH HHS $2 United States
- LZP __
- $a Pubmed-20201125