DNA A-tract bending in three dimensions: solving the dA4T4 vs. dT4A4 conundrum
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, P.H.S.
Grantová podpora
R01 GM048123
NIGMS NIH HHS - United States
GM48123
NIGMS NIH HHS - United States
PubMed
14739342
PubMed Central
PMC337026
DOI
10.1073/pnas.0308143100
PII: 0308143100
Knihovny.cz E-zdroje
- MeSH
- DNA chemie MeSH
- konformace nukleové kyseliny MeSH
- krystalizace MeSH
- magnetická rezonanční spektroskopie MeSH
- molekulární modely MeSH
- roztoky MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- Názvy látek
- DNA MeSH
- roztoky MeSH
DNA A-tracts have been defined as four or more consecutive A.T base pairs without a TpA step. When inserted in phase with the DNA helical repeat, bending is manifested macroscopically as anomalous migration on polyacrylamide gels, first observed >20 years ago. An unsolved conundrum is why DNA containing in-phase A-tract repeats of A(4)T(4) are bent, whereas T(4)A(4) is straight. We have determined the solution structures of the DNA duplexes formed by d(GCAAAATTTTGC) [A4T4] and d(CGTTTTAAAACG) [T4A4] with NH(4)(+) counterions by using NMR spectroscopy, including refinement with residual dipolar couplings. Analysis of the structures shows that the ApT step has a large negative roll, resulting in a local bend toward the minor groove, whereas the TpA step has a positive roll and locally bends toward the major groove. For A4T4, this bend is nearly in phase with bends at the two A-tract junctions, resulting in an overall bend toward the minor groove of the A-tract, whereas for T4A4, the bends oppose each other, resulting in a relatively straight helix. NMR-based structural modeling of d(CAAAATTTTG)(15) and d(GTTTTAAAAC)(15) reveals that the former forms a left-handed superhelix with a diameter of approximately 110 A and pitch of 80 A, similar to DNA in the nucleosome, whereas the latter has a gentle writhe with a pitch of >250 A and diameter of approximately 50 A. Results of gel electrophoretic mobility studies are consistent with the higher-order structure of the DNA and furthermore depend on the nature of the monovalent cation present in the running buffer.
Zobrazit více v PubMed
Marini, J. C., Levene, S. D., Crothers, D. M. & Englund, P. T. (1982) Proc. Natl. Acad. Sci. USA 79, 7664–7668. PubMed PMC
Wu, H.-M. & Crothers, D. M. (1984) Nature 308, 509–513. PubMed
Hagerman, P. J. (1990) Annu. Rev. Biochem. 59, 755–781. PubMed
Crothers, D. M. & Shakked, Z. (1999) in Oxford Handbook of Nucleic Acid Structure, ed. Neidle, S. (Oxford Univ. Press, Oxford), pp. 455–470.
Trifonov, E. N. & Sussman, J. L. (1980) Proc. Natl. Acad. Sci. USA 77, 3816–3820. PubMed PMC
Ulanovsky, L. E. & Trifonov, E. N. (1987) Nature 326, 720–722. PubMed
Bolshoy, A., McNamara, P., Harrington, R. E. & Trifonov, E. N. (1991) Proc. Natl. Acad. Sci. USA 88, 2312–2316. PubMed PMC
De Santis, P., Palleschi, A., Savino, M. & Scipioni, A. (1990) Biochemistry 29, 9269–9273. PubMed
Koo, H.-S., Wu, H.-M. & Crothers, D. M. (1986) Nature 320, 501–506. PubMed
Koo, H. S. & Crothers, D. M. (1988) Proc. Natl. Acad. Sci. USA 85, 1763–1767. PubMed PMC
Haran, T. E., Hahn, J. D. & Crothers, D. M. (1994) J. Mol. Biol. 244, 135–143. PubMed
Hud, N. V. & Plavec, J. (2003) Biopolymers 69, 144–158. PubMed
DiGabriele, A. D. & Steitz, T. A. (1993) J. Mol. Biol. 231, 1024–1039. PubMed
DiGabriele, A. D., Sanderson, M. R. & Steitz, T. A. (1989) Proc. Natl. Acad. Sci. USA 86, 1816–1820. PubMed PMC
Dickerson, R. E., Goodsell, D. S. & Neidle, S. (1994) Proc. Natl. Acad. Sci. USA 91, 3579–3583. PubMed PMC
Dlakic, M., Park, K., Griffith, J. D., Harvey, S. C. & Harrington, R. E. (1996) J. Biol. Chem. 271, 17911–17919. PubMed
Nelson, H. C., Finch, J. T., Luisi, B. F. & Klug, A. (1987) Nature 330, 221–226. PubMed
Dickerson, R. E., Goodsell, D. & Kopka, M. L. (1996) J. Mol. Biol. 256, 108–125. PubMed
Tjandra, N. & Bax, A. (1997) Science 278, 1111–1114. PubMed
Tjandra, N., Tate, S., Ono, A., Kainosho, M. & Bax, A. (2000) J. Am. Chem. Soc. 122, 6190–6200.
MacDonald, D., Herbert, K., Zhang, X. L., Polgruto, T. & Lu, P. (2001) J. Mol. Biol. 306, 1081–1098. PubMed
Barbic, A., Zimmer, D. P. & Crothers, D. M. (2003) Proc. Natl. Acad. Sci. USA 100, 2369–2373. PubMed PMC
Crothers, D. M. (1994) Science 266, 1819–1820. PubMed
Hagerman, P. J. (1988) in Unusual DNA Structures, eds. Wells, R. D. & Harvey, S. C. (Springer, New York), pp. 225–236.
Hagerman, P. J. (1986) Nature 321, 449–450. PubMed
Richmond, T. J. & Davey, C. A. (2003) Nature 423, 145–150. PubMed
Masse, J., Bortmann, P., Dieckmann, T. & Feigon, J. (1998) Nucleic Acids Res. 26, 2618–2624. PubMed PMC
Kolk, M. H., Wijmenga, S. S., Heus, H. A. & Hilbers, C. W. (1998) J. Biomol. NMR 12, 423–433.
Legault, P., Jucker, F. M. & Pardi, A. (1995) FEBS Lett. 362, 156–160. PubMed
Trantirek, L., Stefl, R., Masse, J. E., Feigon, J. & Sklenář, V. (2002) J. Biolmol. NMR 23, 1–12. PubMed
Hansen, M. R., Mueller, L. & Pardi, A. (1998) Nat. Struct. Biol. 5, 1065–1074. PubMed
Case, D. A., Pearlman, D. A., Caldwell, J. W., Cheatham, T. E. I., Wang, J., Ross, W. S., Simmerling, C. L., Darden, T. A., Merz, K. M., Stanton, R. V., et al. (2002) amber 7 (University of California, San Francisco).
Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M. J., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W. & Kollman, P. A. (1995) J. Am. Chem. Soc. 117, 5179–5197.
Padrta, P., Stefl, R., Králík, L., Zídek, L. & Sklenář, V. (2002) J. Biomol. NMR 24, 1–14. PubMed
Bashford, D. & Case, D. A. (2000) Annu. Rev. Phys. Chem. 51, 129–152. PubMed
Tsui, V., Zhu, L., Huang, T.-H., Wright, P. E. & Case, D. A. (2000) J. Biomol. NMR 16, 9–21. PubMed
Lu, X. J., Shakked, Z. & Olson, W. K. (2000) J. Mol. Biol. 300, 819–840. PubMed
Olson, W. K., Bansal, M., Burley, S. K., Dickerson, R. E., Gerstein, M., Harvey, S. C., Heinemann, U., Lu, X. J., Neidle, S., Shakked, Z., et al. (2001) J. Mol. Biol. 313, 229–237. PubMed
Strahs, D. & Schlick, T. (2000) J. Mol. Biol. 301, 643–663. PubMed
Hud, N. V., Schultze, P. & Feigon, J. (1998) J. Am. Chem. Soc. 120, 6403–6404.
Mack, D. R., Chiu, T. K. & Dickerson, R. E. (2001) J. Mol. Biol. 312, 1037–1049. PubMed
Young, M. A., Ravishanker, G., Beveridge, D. L. & Berman, H. M. (1995) Biophys. J. 68, 2454–2468. PubMed PMC
Boisbouvier, J., Delaglio, F. & Bax, A. (2003) Proc. Natl. Acad. Sci. USA 100, 11333–11338. PubMed PMC
Diekmann, S., Mazzarelli, J. M., McLaughlin, L. W., von Kitzing, E. & Travers, A. A. (1992) J. Mol. Biol. 225, 729–738. PubMed
Jerkovic, B. & Bolton, P. H. (2000) Biochemistry 39, 12121–12127. PubMed
Diekmann, S. (1987) Nucleic Acids Res. 15, 247–265. PubMed PMC
Drew, H. R. & Dickerson, R. E. (1981) J. Mol. Biol. 151, 535–556. PubMed
Drak, J. & Crothers, D. M. (1991) Proc. Natl. Acad. Sci. USA 88, 3074–3078. PubMed PMC
Tereshko, V., Minasov, G. & Egli, M. (1999) J. Am. Chem. Soc. 121, 3590–3595.
Woods, K. K., McFail-Isom, L., Sines, C. C., Howerton, S. B., Stephens, R. K. & Williams, L. D. (2000) J. Am. Chem. Soc. 122, 1546–1547.
Young, M. A., Jayaram, B. & Beveridge, D. L. (1997) J. Am. Chem. Soc. 119, 59–69.
Stellwagen, N. C., Magnusdottir, S., Gelfi, C. & Righetti, P. G. (2001) J. Mol. Biol. 305, 1025–1033. PubMed
Hud, N. V., Sklenář, V. & Feigon, J. (1999) J. Mol. Biol. 286, 651–659. PubMed
Denisov, V. P. & Halle, B. (2000) Proc. Natl. Acad. Sci. USA 97, 629–633. PubMed PMC
Stefl, R. & Koca, J. (2000) J. Am. Chem. Soc. 122, 5025–5033.
Lavery, R. & Sklenář, H. (1988) J. Biomol. Struct. Dyn. 6, 63–91. PubMed
Edwards, K. J., Brown, D. G., Spink, N., Skelly, J. V. & Neidle, S. (1992) J. Mol. Biol. 226, 1161–1173. PubMed
A measure of bending in nucleic acids structures applied to A-tract DNA
PDB
1RVH, 1RVI