Characterization of a complex restriction-modification system detected in Staphylococcus aureus and Streptococcus agalactiae strains isolated from infections of domestic animals
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
15259773
DOI
10.1007/bf02931048
Knihovny.cz E-resources
- MeSH
- DNA, Bacterial metabolism MeSH
- DNA Restriction-Modification Enzymes genetics metabolism MeSH
- Animals, Domestic MeSH
- Deoxyribonucleases, Type II Site-Specific genetics metabolism MeSH
- Staphylococcal Infections microbiology veterinary MeSH
- Staphylococcus aureus enzymology isolation & purification MeSH
- Streptococcus agalactiae enzymology isolation & purification MeSH
- Streptococcal Infections microbiology veterinary MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Bacterial MeSH
- DNA Restriction-Modification Enzymes MeSH
- Deoxyribonucleases, Type II Site-Specific MeSH
Characterization of classic type II restriction-modification systems (RMS) (restriction endonucleases and modification methyltransferases) was carried out in isolates of Staphylococcus aureus and Streptococcus agalactiae obtained from clinical material. Among the 100 isolates of S. aureus two different RMS type II were detected. The first was expressed in isolates 32 and 33 (Sau32 I and Sau33 I); the targeting sequence was determined as 5'-GGN CC-3' (Sau96 I isoschizomer). The second was found in isolates no. 90, 93, 96*, and 98 (Sau90 I, Sau93 I, Sau96* I, Sau98 I) and enzymes recognized sequence 5'-CTY RAG-3' (SmlI isoschizomer). Analysis of 40 isolates of S. agalactiae revealed only one RMS; it was detected in two isolates (no. 16 and 23; Sag16 I and Sag23 I). Restriction endonuclease expressed by these isolates cleaved DNA in sequence 5'-CTG CA/G-3' (PstI isoschizomer). In RMS-positive S. aureus and S. agalactiae isolates plasmid DNA capable of replication in Escherichia coli and Bacillus subtilis was also detected and isolated.
See more in PubMed
Mol Gen Genet. 1979 Jan 5;168(1):111-5 PubMed
Annu Rev Microbiol. 1965;19:365-78 PubMed
Microbiology (Reading). 1999 Jan;145 ( Pt 1):127-134 PubMed
Folia Microbiol (Praha). 2003;48(3):319-28 PubMed
FEMS Microbiol Lett. 1993 Oct 15;113(2):129-32 PubMed
FEMS Microbiol Lett. 1998 Jul 1;164(1):215-8 PubMed
Mol Gen Genet. 1996 Nov 27;253(1-2):74-80 PubMed
Folia Microbiol (Praha). 2001;46(3):193-6 PubMed
J Bacteriol. 1988 Jun;170(6):2533-6 PubMed
Curr Microbiol. 2001 Feb;42(2):122-8 PubMed
Nucleic Acids Res. 1979 Nov 24;7(6):1513-23 PubMed
Zentralbl Bakteriol. 1998 May;287(4):277-314 PubMed
J Mol Biol. 1973 Dec 15;81(3):419-23 PubMed
Nucleic Acids Res. 2001 Jan 1;29(1):268-9 PubMed
Anaerobe. 1999 Feb;5(1):37-41 PubMed
Arch Microbiol. 1994;161(5):439-41 PubMed
J Basic Microbiol. 1991;31(2):141-7 PubMed
Nucleic Acids Res. 1992 Aug 25;20(16):4364 PubMed
FEMS Microbiol Lett. 1996 May 1;138(2-3):123-7 PubMed
Nucleic Acids Res. 1993 Jul 1;21(13):3139-54 PubMed
Nucleic Acids Res. 1993 Oct 11;21(20):4843 PubMed
Folia Microbiol (Praha). 2001;46(6):483-7 PubMed
Microbiol Rev. 1993 Jun;57(2):434-50 PubMed
Folia Microbiol (Praha). 2002;47(6):641-8 PubMed
Lett Appl Microbiol. 1993 Dec;17(6):297-9 PubMed
Analysis of recombinant group B streptococcal protein ScaAB and evaluation of its immunogenicity