Multiplex PCR detection of the antibiotic resistance genes in Staphylococcus aureus strains isolated from auricular infections
Language English Country United States Media print-electronic
Document type Evaluation Study, Journal Article
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Drug Resistance, Bacterial * MeSH
- Bacterial Proteins genetics metabolism MeSH
- Erythromycin pharmacology MeSH
- Humans MeSH
- Membrane Proteins genetics metabolism MeSH
- Methyltransferases genetics metabolism MeSH
- Oxacillin pharmacology MeSH
- Polymerase Chain Reaction methods MeSH
- Penicillin-Binding Proteins MeSH
- Staphylococcal Infections microbiology MeSH
- Staphylococcus aureus drug effects genetics isolation & purification MeSH
- Ear Auricle microbiology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Bacterial Proteins MeSH
- ErmA protein, Bacteria MeSH Browser
- Erythromycin MeSH
- mecA protein, Staphylococcus aureus MeSH Browser
- MefA protein, Streptococcus MeSH Browser
- Membrane Proteins MeSH
- Methyltransferases MeSH
- Oxacillin MeSH
- Penicillin-Binding Proteins MeSH
Thirty-five Staphylococcus aureus strains from auricular infections were isolated. The identification of strains was confirmed by Api ID 32 Staph strips, the antibiotic susceptibility test was performed using ATB Staph kit. PCR assay was used to detect the oxacillin resistance gene (mecA) and the erythromycin genes (ermA, ermB, ermC, msrA and mef). The susceptibility profile of all strains revealed a low resistance level to oxacillin and erythromycin. The PCR results show that 60 % of the strains are mecA positive. The frequency of erythromycin genes was: ermA (+) 22.8 %, ermB (+) 45.7, ermC (+) 17.1, msrA (+) 28.6. The mef gene was not detected in any strain. No correlations between genotypic and phenotypic methods for the determination of oxacillin and erythromycin resistance was found. However, multiplex PCR technique was shown to be a fast, practical and economic technique for the detection of methicillin-and erythromycin-resistant staphylococci.
See more in PubMed
Diagn Microbiol Infect Dis. 1998 Mar;30(3):205-14 PubMed
Jpn J Infect Dis. 2004 Apr;57(2):74-7 PubMed
J Hosp Infect. 2002 May;51(1):33-42 PubMed
Gene. 1995 Feb 3;153(1):93-8 PubMed
Folia Microbiol (Praha). 2007;52(3):281-5 PubMed
Diagn Microbiol Infect Dis. 2002 Jul;43(3):225-32 PubMed
Infect Control Hosp Epidemiol. 1995 Jan;16(1):12-7 PubMed
Antimicrob Agents Chemother. 1999 May;43(5):1062-6 PubMed
Antimicrob Agents Chemother. 1995 Mar;39(3):577-85 PubMed
Mol Microbiol. 1990 Jul;4(7):1207-14 PubMed
Diagn Microbiol Infect Dis. 1999 Apr;33(4):283-97 PubMed
J Antimicrob Chemother. 1993 Feb;31(2):211-7 PubMed
J Clin Microbiol. 2003 Sep;41(9):4089-94 PubMed
Pathol Biol (Paris). 1998 Apr;46(4):227-34 PubMed
Clin Microbiol Rev. 2001 Oct;14(4):836-71, table of contents PubMed
Folia Microbiol (Praha). 2006;51(3):236-8 PubMed
Antimicrob Agents Chemother. 1996 Nov;40(11):2562-6 PubMed
Arch Med Res. 2006 Nov;37(8):953-60 PubMed
J Clin Microbiol. 2002 Mar;40(3):774-8 PubMed
Clin Microbiol Rev. 1997 Oct;10(4):781-91 PubMed
J Clin Microbiol. 1994 Jul;32(7):1768-72 PubMed
Folia Microbiol (Praha). 2007;52(6):593-9 PubMed
Clin Infect Dis. 2002 Feb 15;34(4):482-92 PubMed
Antimicrob Agents Chemother. 2000 Feb;44(2):231-8 PubMed
J Antimicrob Chemother. 2002 Mar;49(3):489-95 PubMed
J Antimicrob Chemother. 1999 Sep;44(3):351-8 PubMed
Int J Antimicrob Agents. 2005 Sep;26(3):213-8 PubMed