Comparative study of the life cycle dependent post-translation modifications of protein synthesis elongation factor Tu present in the membrane proteome of streptomycetes and mycobacteria
Language English Country United States Media print-electronic
Document type Comparative Study, Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Cell Membrane chemistry enzymology metabolism MeSH
- Peptide Elongation Factor Tu isolation & purification metabolism MeSH
- Phosphorylation MeSH
- Mycobacterium smegmatis chemistry enzymology metabolism MeSH
- Protein Processing, Post-Translational * MeSH
- Protein Kinases isolation & purification metabolism MeSH
- Streptomyces chemistry enzymology metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
- Names of Substances
- Peptide Elongation Factor Tu MeSH
- Protein Kinases MeSH
We present the results of analysis of membrane phosphoproteomes from individual morphological stages of Streptomyces coelicolor that reflect developmentally dependent heterogeneity and phosphorylation of intrinsic and externally added purified Strepomyces aureofaciens EF-Tu. Fast growing nonpathogenic Mycobacterium smegmatis was used as a non-differentiating actinomycetes comparative model. Streptomycetes membrane fraction was found to contain protein kinase(s) catalyzing phosphorylation of both its own and an externally added EF-Tu, whereas Mycobacterium membrane fraction contains protein kinase phosphorylating only its own EF-Tu.
See more in PubMed
Biochem Biophys Res Commun. 2000 Dec 29;279(3):942-8 PubMed
Folia Microbiol (Praha). 2005;50(5):393-400 PubMed
J Biol Chem. 1975 May 25;250(10):4007-21 PubMed
Anal Biochem. 1976 May 7;72:248-54 PubMed
Curr Opin Microbiol. 2001 Dec;4(6):667-73 PubMed
Microbiology (Reading). 2003 Jul;149(Pt 7):1609-1621 PubMed
Biochim Biophys Acta. 1986 Mar 27;856(1):50-8 PubMed
J Biol Chem. 1986 Sep 5;261(25):11448-51 PubMed
Proteomics. 2007 Sep;7(18):3332-41 PubMed
J Bacteriol. 1999 Jan;181(1):15-23 PubMed
Appl Microbiol Biotechnol. 2002 Aug;59(4-5):419-25 PubMed
Electrophoresis. 1992 Jul;13(7):429-39 PubMed
Folia Microbiol (Praha). 1999;44(2):131-41 PubMed
Mol Microbiol. 2005 Apr;56(2):383-96 PubMed
J Bacteriol. 1991 May;173(10):3096-100 PubMed
Acta Biol Hung. 1997;48(3):339-58 PubMed
J Biol Chem. 1995 Jun 16;270(24):14541-7 PubMed
Infect Immun. 2004 Apr;72(4):2160-9 PubMed
Eur J Biochem. 1981 Jan;113(2):397-403 PubMed
Mol Microbiol. 2002 Oct;46(2):319-30 PubMed
FEMS Microbiol Lett. 1989 Nov;53(1-2):11-5 PubMed
Microbiology (Reading). 2005 Aug;151(Pt 8):2707-2720 PubMed
Nature. 1976 May 6;261(5555):23-6 PubMed
Eur J Biochem. 1998 Oct 1;257(1):55-61 PubMed
Nature. 2002 May 9;417(6885):141-7 PubMed
Microsc Res Tech. 2002 Jul 15;58(2):111-3 PubMed
Eur J Biochem. 1982 Dec;129(1):127-32 PubMed
J Bacteriol. 1990 Sep;172(9):5147-53 PubMed
Biochim Biophys Acta. 1998 Nov 26;1443(1-2):1-22 PubMed
Infect Immun. 1998 Jun;66(6):2625-31 PubMed
Biochem Biophys Res Commun. 2002 Nov 29;299(2):335-42 PubMed
Adv Microb Physiol. 2000;42:47-238 PubMed
Folia Microbiol (Praha). 2007;52(3):215-22 PubMed
Appl Environ Microbiol. 2005 Jun;71(6):2848-52 PubMed
J Biol Chem. 1993 Jan 5;268(1):601-7 PubMed
Folia Microbiol (Praha). 2007;52(5):471-8 PubMed