The role of adenosine receptor agonists in regulation of hematopoiesis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
21242946
PubMed Central
PMC6259153
DOI
10.3390/molecules16010675
PII: molecules16010675
Knihovny.cz E-zdroje
- MeSH
- hematopoéza účinky léků MeSH
- lidé MeSH
- purinergní receptory P1 účinky léků MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- purinergní receptory P1 MeSH
The review summarizes data evaluating the role of adenosine receptor signaling in murine hematopoietic functions. The studies carried out utilized either non-selective activation of adenosine receptors induced by elevation of extracellular adenosine or by administration of synthetic adenosine analogs having various proportions of selectivity for a particular receptor. Numerous studies have described stimulatory effects of non-selective activation of adenosine receptors, manifested as enhancement of proliferation of cells at various levels of the hematopoietic hierarchy. Subsequent experimental approaches, considering the hematopoiesis-modulating action of adenosine receptor agonists with a high level of selectivity to individual adenosine receptor subtypes, have revealed differential effects of various adenosine analogs. Whereas selective activation of A₁ receptors has resulted in suppression of proliferation of hematopoietic progenitor and precursor cells, that of A₃ receptors has led to stimulated cell proliferation in these cell compartments. Thus, A₁ and A₃ receptors have been found to play a homeostatic role in suppressed and regenerating hematopoiesis. Selective activation of adenosine A₃ receptors has been found to act curatively under conditions of drug- and radiation-induced myelosuppression. The findings in these and further research areas will be summarized and mechanisms of hematopoiesis-modulating action of adenosine receptor agonists will be discussed.
Zobrazit více v PubMed
Drury A.N., Szent-Györgyi A. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J. Physiol. (London) 1929;68:213–237. PubMed PMC
Abbracchio M.P. P1 and P2 receptors in cell growth and differentiation. Drug Dev. Res. 1996;39:393–406. doi: 10.1002/(SICI)1098-2299(199611/12)39:3/4<393::AID-DDR21>3.0.CO;2-1. DOI
Linden J. Molecular approach to adenosine receptors: Receptor-mediated mechanisms of tissue protection. Annu. Rev. Pharmacol. Toxicol. 2001;41:775–778. doi: 10.1146/annurev.pharmtox.41.1.775. PubMed DOI
Berne R.M. Cardiac nucleotides in hypoxia – possible role in regulation of coronary blood flow. Am. J. Physiol. 1963;204:317–322. PubMed
Newby A.C. Adenosine and the concept of ‘retaliatory metabolites’. Trends Biochem. Sci. 1984;9:42–44. doi: 10.1016/0968-0004(84)90176-2. DOI
Bruns R.F. Role of adenosine in energy supply/demand balance. Nucleos. Nucleot. 1991;10:931–943. doi: 10.1080/07328319108047231. DOI
Abbracchio M.P., Burnstock G. Purinergic signalling: Pathophysiological roles. Jap. J. Pharmacol. 1998;78:113–145. doi: 10.1254/jjp.78.113. PubMed DOI
Poulsen S.-A., Quinn R.J. Adenosine receptors: New opportunities for future drugs. Bioorgan. Med. Chem. 1998;6:619–641. doi: 10.1016/S0968-0896(98)00038-8. PubMed DOI
Olah M.E., Stiles G.L. Adenosine receptor subtypes: Characterization and therapeutic regulation. Annu. Rev. Pharmacol. Toxicol. 1995;35:581–606. doi: 10.1146/annurev.pa.35.040195.003053. PubMed DOI
Fredholm B.B., Arslan G., Halldner L., Kull B., Schulte G., Wasserman W. Structure and function of adenosine receptors and their genes. Naunyn-Schmied. Arch. Pharmacol. 2000;362:364–374. doi: 10.1007/s002100000313. PubMed DOI
Fredholm B.B., Arslan G., Halldner L, Kull B., Schulte G., Ådén U., Svenningsson P. Adenosine receptor signaling in vitro and in vivo. Drug Dev. Res. 2001;52:274–282. doi: 10.1002/ddr.1124. DOI
Klotz K.-N. Adenosine receptors and their ligands. Naunyn-Schmied. Arch. Pharmacol. 2000;362:382–391. doi: 10.1007/s002100000315. PubMed DOI
Cronstein B.N., Bouma M.G., Becker B.F. Purinergic mechanisms in inflammation. Drug Dev. Res. 1996;39:426–435. doi: 10.1002/(SICI)1098-2299(199611/12)39:3/4<426::AID-DDR24>3.0.CO;2-Y. DOI
Haskó G., Linden J., Cronstein B., Pacher P. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat. Rev. Drug Dis. 2008;7:759–770. doi: 10.1038/nrd2638. PubMed DOI PMC
Plagemann P.G.W., Wohlhueter R.W., Woffendin C. Nucleoside and nucleobase transport in animal cells. Biochim. Biophy. Acta. 1988;947:405–443. doi: 10.1016/0304-4157(88)90002-0. PubMed DOI
Thorn J.A., Jarvis S.M. Adenosine transporters. Gen. Pharmacol. 1996;27:613–620. doi: 10.1016/0306-3623(95)02053-5. PubMed DOI
Brown J.R., Cornell K., Cook P.W. Adenosine- and adenine-nucleotide-mediated inhibition of normal and transformed keratinocyte proliferation is dependent upon dipyridamole-sensitive adenosine transport. J. Invest. Dermatol. 2000;115:849–859. doi: 10.1046/j.1523-1747.2000.00145.x. PubMed DOI
Schrier S.M., van Tilburg E.W., van der Meulen H., Ijzerman A.P., Mulder G.J., Nagelkerke J.F. Extracellular adenosine-induced apoptosis in mouse neuroblastoma cells-studies on involvement of adenosine receptors and adenosine uptake. Biochem. Pharmacol. 2001;61:417–425. PubMed
Nucciarelli F., Mearini E., Minelli A. Effects of adenosine on prostate adenocarcinoma PC-3 and bladder carcinoma J82 cells lines. Drug Dev. Res. 2003;58:390–395. doi: 10.1002/ddr.10183. DOI
Hofer M., Hoferová Z., Pospíšil M, Znojil V., Chramostová K. Effects of adenosine on the growth of murine G:5:113 fibrosarcoma cells in vitro. FoliaBiologica (Praha) 2003;49:207–210. PubMed
Gordon E.L., Pearson J.D., Dickinson E.S., Moreau D., Slakey L.L. The hydrolysis of extracellular adenine nucleotides by arterial smooth muscle cells - Regulation of adenosine production at the cell-surface. J. Biol. Chem. 1989;264:18986–18992. PubMed
Pospíšil M., Hofer M., Znojil V., Vácha J., Netíková J., Holá J. Synergistic effect of granulocyte colony-stimulating factor and drugs elevating extracellular adenosine on neutrophil production in mice. Blood. 1995;86:3692–3697. PubMed
Pospíšil M., Hofer M., Netíková J., Viklická Š., Pipalová I., Bartoníčková A. Effect of dipyridamole and adenosine monophosphate on cell proliferation in the hemopoietic tissue of normal and gamma-irradiated mice. Experientia. 1992;48:253–257. doi: 10.1007/BF01930468. PubMed DOI
Hošek B., Boháček J., Šikulová J., Pospíšil M., Vacek A. Protection of early cellular damage in 1 Gy-irradiated mice by the elevation of extracellular adenosine. Radiat. Environ. Biophys. 1992;31:289–297. doi: 10.1007/BF01210209. PubMed DOI
Boháček J., Hošek B., Pospíšil M. Postirradiation administration of adenosine monophosphate with dipyridamole reduces early cellular damage in mice. Life Sci. 1993;53:1317–1324. doi: 10.1016/0024-3205(93)90577-P. PubMed DOI
Hofer M., Mazur L., Pospíšil M., Weiterová L., Znojil V. Radioprotective action of extracellular adenosine on bone marrow cells in mice exposed to gamma rays as assayed by the micronucleus test. Radiat. Res. 2000;154:217–221. doi: 10.1667/0033-7587(2000)154[0217:RAOEAO]2.0.CO;2. PubMed DOI
Pospíšil M., Hofer M., Netíková J., Pipalová I., Vacek A., Bartoníčková A., Volenec K. Elevation of extracellular adenosine induces radioprotective effects in mice. Radiat. Res. 1993;134:323–330. doi: 10.2307/3578192. PubMed DOI
Pospíšil M., Hofer M., Vacek A., Netíková J., Pipalová I., Viklická Š. Noradrenaline reduces cardiovascular effects of the combined dipyridamole and AMP administration but preserves radioprotective effects of these drugs on hematopoiesis in mice. Physiol. Res. 1993;42:333–340. PubMed
Hofer M., Pospíšil M., Netíková J., Znojil V., Vácha J. Enhancement of haemopoietic spleen colony formation by drugs elevating extracellular adenosine: Effects of repeated in vivo treatment. Physiol. Res. 1997;46:285–290. PubMed
Pospíšil M., Hofer M., Znojil V., Vácha J., Netíková J., Holá J. Radioprotection of mouse hemopoiesis by dipyridamole and adenosine monophosphate in fractionated treatment. Radiat. Res. 1995;142:16–22. doi: 10.2307/3578962. PubMed DOI
Hofer M., Pospíšil M., Netíková J., Znojil V., Vácha J., Holá J. Radioprotective efficacy of dipyridamole and AMP combination in fractionated radiation regimen, and its dependence on the time of administration of the drugs prior to irradiation. Physiol. Res. 1995;44:93–98. PubMed
Pospíšil M., Hofer M., Vacek A., Netíková J., Holá J., Znojil V., Weiterová L. Drugs elevating extracellular adenosine enhance cell-cycling of hematopoietic progenitor cells as inferred from the cytotoxic effects of 5-fluorouracil. Exp. Hematol. 2001;29:557–562. doi: 10.1016/S0301-472X(01)00622-1. PubMed DOI
Hofer M., Weiterová L., Vacek A., Znojil V., Pospíšil M., Vácha J. Elevation of of extracellular adenosine mobilizes haematopoietic progenitor cells into peripheral blood and enhances the mobilizing effects of granulocyte colony-stimulating factor. Eur. J. Haematol. 2003;71:204–210. doi: 10.1034/j.1600-0609.2003.00120.x. PubMed DOI
Pospíšil M., Hofer M., Znojil V., Netíková J., Vácha J., Holá J., Vacek A. Granulocyte colony-stimulating factor and drugs elevating extracellular adenosine synergize to enhance haematopoietic reconstitution in irradiated mice. Eur. J. Haematol. 1998;60:172–180. PubMed
Weiterová L., Hofer M., Pospíšil M., Znojil V., Vácha J., Vacek A., Pipalová I. Influence of the joint treatment with granulocyte colony-stimulating factor and drugs elevating extracellular adenosine on erythropoietic recovery following 5-fluorouracil-induced hematotoxicity in mice. Eur. J. Haematol. 2000;65:310–316. PubMed
Hofer M., Pospíšil M., Weiterová L., Znojil V., Vácha J., Holá J., Vacek A., Pipalová I. Combination of drugs elevating extracellular adenosine with granulocyte colony-stimulating factor promotes granulopoietic recovery in mouse bone marrow after 5-fluorouracil treatment. Physiol. Res. 2001;50:521–524. PubMed
Hofer M., Pospíšil M., Znojil V., Vacek A., Weiterová L., Holá J., Vácha J. Drugs elevating extracellular adenosine promote regeneration of haematopoietic progenitor cells in severely myelosuppressed mice: their comparison and joint effects with granulocyte colony-stimulating factor. Eur. J. Haematol. 2002;68:4–11. doi: 10.1034/j.1600-0609.2002.00564.x. PubMed DOI
Hofer M., Pospíšil M., Netíková J., Znojil V., Vácha J. Granulocyte colony-stimulating factor and drugs elevating extracellular adenosine act additively to enhance the hemopoietic spleen colony formation in irradiated mice. Physiol. Res. 1999;48:37–42. PubMed
Jacobson M.A. Adenosine receptor agonists. Expert Opin. Ther. Patents. 2002;12:489–501. doi: 10.1517/13543776.12.4.489. DOI
Tuovinen K., Tarjanen J. Clearance of cyclopentyladenosine and cyclohexyladenosine in rats following a single subcutaneous dose. Pharmacol. Res. 2004;50:329–334. doi: 10.1016/j.phrs.2004.02.007. PubMed DOI
Martin P.L., Barrett R.J., Sykes A., Droppleman D.A., Wright K.F., Mossem D. Pharmacology and toxicology of the A2A -adenosine receptor agonist 2-[(cyclohexylmethylene)hydrazino]adenosine (MRE-0470) in the rat. Drug Dev. Res. 1997;42:76–85. doi: 10.1002/(SICI)1098-2299(199710)42:2<76::AID-DDR4>3.0.CO;2-M. DOI
Pospíšil M., Hofer M., Vacek A., Znojil V., Pipalová I. Effects of stable adenosine receptor agonists on bone marrow hematopoietic cells as inferred from the cytotoxic action of 5-fluorouracil. Physiol. Res. 2004;53:549–556. PubMed
Fredholm B.B., Arslan G., Halldner L., Kull B., Schulte G., Wassermann G. Structure and function of adenosine receptors and their genes. Naunyn-Schmied. Arch. Pharmacol. 2000;362:364–374. doi: 10.1007/s002100000313. PubMed DOI
Parsons M., Young L., Lee J.E., Jacobson K.A., Liang B.T. Distinct cardioprotective effects of adenosine mediated by differential coupling of receptor subtypes to phospholipases C and D. FASEB J. 2000;14:1423–1431. doi: 10.1096/fj.14.10.1423. PubMed DOI PMC
Hofer M., Pospíšil M., Vacek A., Holá J., Znojil V., Weiterová L., Štreitová D. Effects of adenosine A3 receptor agonist on bone marrow granulocytic system in 5-fluorouracil-treated mice. Eur. J. Pharmacol. 2006;538:163–167. doi: 10.1016/j.ejphar.2006.03.042. PubMed DOI
Pospíšil M., Hofer M., Vacek A., Holá J., Pipalová I., Znojil V. N6-Cyclopentyladenosine inhibits proliferation of haematopoietic progenitor cells in vivo. Eur. J. Pharmacol. 2005;507:1–6. doi: 10.1016/j.ejphar.2004.11.027. PubMed DOI
Hofer M., Pospíšil M., Znojil V., Holá J., Vacek A., Štreitová D. Adenosine A3 receptor agonist acts as a homeostatic regulator of bone marrow hematopoiesis. Biomed. Pharmacother. 2007;61:356–359. doi: 10.1016/j.biopha.2007.02.010. PubMed DOI
Hofer M., Pospíšil M., Znojil V., Holá J., Štreitová D., Vacek A. Homeostatic action of adenosine A3 and A1 receptor agonists on proliferation of hematopoietic precursor cells. Exp. Biol. Med. 2008;233:897–900. doi: 10.3181/0802-RM-43. PubMed DOI
Merimsky O., Bar-Yehuda S., Madi L., Fishman P. Modulation of the A3 adenosine receptor by low agonist concentration induces antitumor and myelostimulatory effects. Drug Dev. Res. 2003;58:386–389. doi: 10.1002/ddr.10182. DOI
Fortin A., Harbour D., Fernandes M., Borgeat P., Bourgoin S. Differential expression of adenosine receptors in human neutrophils: up-regulation by specific Th1 cytokines and lipopolysaccharide. J. Leukocyte Biol. 2006;79:574–585. PubMed
Thiele A., Kronstein R., Wetzel A., Gerth A., Nieber K., Hauschildt S. Regulation of adenosine receptor subtypes during cultivation of human monocytes: Role of receptors in preventing lipopolysaccharide-triggered respiratory burst. Infec. Immunity. 2004;72:1349–1357. doi: 10.1128/IAI.72.3.1349-1357.2004. PubMed DOI PMC
Himer L., Csoka B., Selmeczy Z., Koscso B., Pocza T., Pacher P., Nemeth Z.H., Deitch E.A., Vizi E.S., Cronstein B.N., Hasko G. Adenosine A2a receptor activation protects CD4+ T lymphocytes against activation-induced cell death. FASEB J. 2010;24:2631–2640. PubMed PMC
Mirabet M., Herrera C., Cordero O.J., Mallol J., Lluis C., Franco R. Expression of A2B adenosine receptors in human lymphocytes: their role in T cell activation. J. Cell Sci. 1999;112:491–502. PubMed
Gessi S., Varani K., Merighi S., Cattabriga E., Avitabile A., Gavioli R., Fortini C., Leung E., Mac Lennan S., Borea P.A. Expression of adenosine A3 receptors in human lymphocytes: up-regulation in T-cell activation. Mol. Pharmacol. 2004;65:711–719. doi: 10.1124/mol.65.3.711. PubMed DOI
Štreitová D., Šefc L., Savvulidi F., Pospíšil M., Holá J., Hofer M. Adenosine A1, A2a, A2b, and A3 receptors in hematopoiesis. 1. Expression of receptor mRNA in four mouse hematopoietic precursor cells. Physiol. Res. 2010;59:133–137. PubMed
Hofer M., Vacek A., Lojek A., Holá J., Štreitová D. Ultrafiltered pig leukocyte extract (IMUNOR®) decreases nitric oxide formation and hematopoiesis-stimulating cytokine production in lipopolysaccharide-stimulated RAW 264.7 macrophages. Int. Immunopharmacol. 2007;7:1369–1374. doi: 10.1016/j.intimp.2007.06.003. PubMed DOI
Kamio N., Akifusa S., Yamaguchi N., Yamashita Y. Induction of granulocyte colony-stimulating factor by globular adiponectin via the MEK-ERK pathway. Mol. Cell. Endocrinol. 2008;292:20–25. doi: 10.1016/j.mce.2008.05.002. PubMed DOI
Murphree L.J., Sullivan G.W., Marshall M.A., Linden J. Lipopolysaccharide rapidly modifies adenosine receptor transcripts in murine and human macrophages: role of NF-κB in A2A adenosine receptor induction. Biochem. J. 2005;391:575–580. doi: 10.1042/BJ20050888. PubMed DOI PMC
Štreitová D., Hofer M., Holá J., Vacek A., Pospíšil M. Adenosine A1, A2a, A2b, and A3 receptors in hematopoiesis. 2. Expression of receptor mRNA in resting and lipopolysaccharide-activated mouse RAW 264.7 macrophages. Physiol. Res. 2010;59:139–144. PubMed
Katebi M., Fernandez P., Chan E.S., Cronstein B.N. Adenosine A2a receptor blockade or deletion diminishes fibrocyte accumulation in the skin in a murine model of scleroderma, bleomycin-induced fibrosis. Inflammation. 2008;31:299–303. doi: 10.1007/s10753-008-9078-y. PubMed DOI PMC
Katebi M., Soleimani M., Cronstein B.N. Adenosine A2a receptors play an active role in mouse bone marrow-derived mesenchymal stem cell development. J. Leukocyte Biol. 2009;85:438–444. PubMed PMC
Montesinos M.C., Shaw J.P., Yee H., Shamamian P., Cronstein B.N. Adenosine A2a receptor activation promotes wound neovascularization by stimulating angiogenesis and vasculogenesis. Am. J. Pathol. 2004;164:1887–1892. doi: 10.1016/S0002-9440(10)63749-2. PubMed DOI PMC
Weiterová L., Hofer M., Pospíšil M., Znojil V., Štreitová D. Drugs elevating extracellular adenosine administered in vivo induce serum colony forming activity and interleukin-6 in mice. Physiol. Res. 2007;56:463–473. PubMed
Bar-Yehuda S., Madi L., Barak D., Mittelman M., Ardon E., Ochaion A., Cohn S., Fishman P. Agonists to the A3 adenosine receptor induce G-CSF production via NF-κ B activation: A new class of myeloprotective agents. Exp. Hematol. 2002;30:1390–1398. doi: 10.1016/S0301-472X(02)00962-1. PubMed DOI
Hofer M., Vacek A., Pospíšil M., Weiterová L., Holá J., Štreitová D., Znojil V. Adenosine potentiates stimulatory effects on granulocyte-macrophage hematopoietic progenitor cells in vitro of IL-3 and SCF, but not those of G-CSF, GM-CSF and IL-11. Physiol. Res. 2006;55:591–596. PubMed
Hofer M., Pospíšil M., Šefc L., Dušek L., Vacek A., Holá J., Hoferová Z., Štreitová D. Activation of adenosine A3 receptors supports hematopoiesis-stimulating effects of granulocyte colony-stimulating factor in sublethally irradiated mice. Int. J. Radiat. Biol. 2010;86:649–656. doi: 10.3109/09553001003746075. PubMed DOI
Van Troostenburg A.-R., Clark E.V., Carey W.O.H., Warrington, Kerns W.D., Cohn I., Silverman M.H., Bar-Yehuda S., Fong K.-L.L., Fishman P. Tolerability, pharmacokinetics and concentration-dependent hemodynamic effects of oral CF 101, an A3 adenosine receptor agonist, in healthy young men. Int. J. Clin. Pharma. Therapeutics. 2004;42:534–542. PubMed
Fishman P., Bar-Yehuda S. Pharmacology and therapeutic applications of A3 receptor subtype. Curr. Top. Med. Chem. 2003;3:463–469. doi: 10.2174/1568026033392147. PubMed DOI
Silverman M.H., Strand V., Markovits D., Nahir M., Reitblat T., Molad Y., Rosner I., Rozenbaum M., Mader R., Adawi M., et al. Clinical evidence for utilization of the A3 adenosine receptor as a target to treat rheumatoid arthritis: Data from a Phase II clinical trial. J. Rheumatol. 2008;35:41–48. PubMed
Combining Pharmacological Countermeasures to Attenuate the Acute Radiation Syndrome-A Concise Review
Lack of adenosine A3 receptors causes defects in mouse peripheral blood parameters
Granulocyte colony-stimulating factor in the treatment of acute radiation syndrome: a concise review