Diversity, phylogeny and expression patterns of Pou and Six homeodomain transcription factors in hydrozoan jellyfish Craspedacusta sowerbyi
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22558464
PubMed Central
PMC3340352
DOI
10.1371/journal.pone.0036420
PII: PONE-D-11-25594
Knihovny.cz E-zdroje
- MeSH
- faktory domény POU chemie genetika metabolismus MeSH
- fylogeneze * MeSH
- genetická variace * MeSH
- Hydrozoa genetika MeSH
- molekulární evoluce MeSH
- orgánová specificita MeSH
- terciární struktura proteinů MeSH
- transkriptom * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- faktory domény POU MeSH
Formation of all metazoan bodies is controlled by a group of selector genes including homeobox genes, highly conserved across the entire animal kingdom. The homeobox genes from Pou and Six classes are key members of the regulation cascades determining development of sensory organs, nervous system, gonads and muscles. Besides using common bilaterian models, more attention has recently been targeted at the identification and characterization of these genes within the basal metazoan phyla. Cnidaria as a diploblastic sister group to bilateria with simple and yet specialized organs are suitable models for studies on the sensory organ origin and the associated role of homeobox genes. In this work, Pou and Six homeobox genes, together with a broad range of other sensory-specific transcription factors, were identified in the transcriptome of hydrozoan jellyfish Craspedacusta sowerbyi. Phylogenetic analyses of Pou and Six proteins revealed cnidarian-specific sequence motifs and contributed to the classification of individual factors. The majority of the Craspedacusta sowerbyi Pou and Six homeobox genes are predominantly expressed in statocysts, manubrium and nerve ring, the tissues with sensory and nervous activities. The described diversity and expression patterns of Pou and Six factors in hydrozoan jellyfish highlight their evolutionarily conserved functions. This study extends the knowledge of the cnidarian genome complexity and shows that the transcriptome of hydrozoan jellyfish is generally rich in homeodomain transcription factors employed in the regulation of sensory and nervous functions.
Zobrazit více v PubMed
Banerjee-Basu S, Baxevanis AD. Molecular evolution of the homeodomain family of transcription factors. Nucleic Acids Res. 2001;29:3258–3269. PubMed PMC
Garcia-Fernàndez J. The genesis and evolution of homeobox gene clusters. Nat Rev Genet. 2005;6:881–892. PubMed
Holland PWH, Booth HAF, Bruford EA. Classification and nomenclature of all human homeobox genes. BMC Biol. 2007;5:47. PubMed PMC
Kappen C. Analysis of a complete homeobox gene repertoire: Implications for the evolution of diversity. Proc Nat Acad Sci USA. 2000;97:4481–4486. PubMed PMC
Zhao Y, Westphal H. Homeobox Genes and Human Genetic Disorders. Curr Mol Med. 2002;2:13–23. PubMed
Cillo C, Faiella A, Cantile M, Boncinelli E. Homeobox Genes and Cancer. Exp Cell Res. 1999;248:1–9. PubMed
Erwin DH, Davidson EH. The last common bilaterian ancestor. Development. 2002;129:3021–3032. PubMed
Galliot B, Quiquand M. A two-step process in the emergence of neurogenesis. Eur J Neurosci. 2011;34:847–862. PubMed
Galliot B, Vargas Cd, Miller D. Evolution of homeobox genes: Q50 Paired-like genes founded the Paired class. Dev Genes Evol. 1999;209:186–197. PubMed
Nam J, Nei M. Evolutionary change of the numbers of homeobox genes in bilateral animals. Mol Biol Evol. 2005;22:2386–2394. PubMed PMC
Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, et al. Sea Anemone Genome Reveals Ancestral Eumetazoan Gene Repertoire and Genomic Organization. Science. 2007;317:86–94. PubMed
Schierwater B, Kamm K, Srivastava M, Rokhsar D, Rosengarten RD, et al. The Early ANTP Gene Repertoire: Insights from the Placozoan Genome. PLoS ONE. 2008;3:e2457. PubMed PMC
Technau U, Rudd S, Maxwell P, Gordon PMK, Saina M, et al. Maintenance of ancestral complexity and non-metazoan genes in two basal cnidarians. Trends Genet. 2005;21:633–639. PubMed
Bharathan G, Janssen B-J, Kellogg EA, Sinha N. Did homeodomain proteins duplicate before the origin of angiosperms, fungi, and metazoa? Proc Nat Acad Sci USA. 1997;94:13749–13753. PubMed PMC
Veenstra GJC, Vliet PCvd, Destrée OHJ. POU domain transcription factors in embryonic development. Mol Biol Rep. 1997;24:130–155. PubMed
Bebenek IG, Gates RD, Morris J, Hartenstein V, Jacobs DK. sine oculis in basal Metazoa. Dev Genes Evol. 2004;214:342–351. PubMed
Arendt D. Evolution of eyes and photoreceptor cell types. Int J Dev Biol. 2003;47:563–571. PubMed
Gehring WJ. New Perspectives on Eye Development and the Evolution of Eyes and Photoreceptors. J Hered. 2005;96:171–184. PubMed
Kumar J, Moses K. Transcription factors in eye development: a gorgeous mosaic? Genes Dev. 1997;11:2023–2028. PubMed
Piatigorsky J, Kozmik Z. Cubozoan jellyfish: an Evo/Devo model for eyes and other sensory systems. Int J Dev Biol. 2004;48:719–729. PubMed
Plachetzki DC, Serb JM, Oakley TH. New insights into the evolutionary history of photoreceptor cells. Trends Ecol Evol. 2005;20:465–467. PubMed
Kozmik Z. Pax genes in eye development and evolution. Curr Opin Genet Dev. 2005;15:430–438. PubMed
Martin VJ. Photoreceptors of cnidarians. Can J Zool. 2002;80:1703–1722.
deCórdoba SR, Gallardo ME, López-Ríos J, Bovolenta P. The Human SIX Family of Homeobox Genes. Curr Genomics. 2001;2:231–242.
Andersen B, Rosenfeld MG. POU Domain Factors in the Neuroendocrine System: Lessons from Developmental Biology Provide Insights into Human Disease. Endocr Rev. 2001;22:2–35. PubMed
deMelo J, Qiu X, Du G, Cristante L, Eisenstat DD. Dlx1, Dlx2, Pax6, Brn3b, and Chx10 Homeobox Gene Expression Defines the Retinal Ganglion and Inner Nuclear Layers of the Developing and Adult Mouse Retina. J Comp Neuro. 2003;461:187–204. PubMed
Gan L, Wang SW, Huang Z, Klein WH. POU Domain Factor Brn-3b Is Essential for Retinal Ganglion Cell Differentiation and Survival but Not for Initial Cell Fate Specification. Dev Biol. 1999;210:469–480. PubMed
Kawakami K, Sato S, Ozaki H, Ikeda K. Six family genesÐstructure and function as transcription factors and their roles in development. BioEssays. 2000;22:616–626. PubMed
Kumar JP. The sine oculis homeobox (SIX) family of transcription factors as regulators of development and disease. Cell Mol Life Sci. 2009;66:565–583. PubMed PMC
Lanier J, Quina LA, Eng SR, Cox E, Turner EE. Brn3a target gene recognition in embryonic sensory neurons. Dev Biol. 2007;302:703–716. PubMed PMC
Mu X, Beremand PD, Zhao S, Pershad R, Sun H, et al. Discrete gene sets depend on POU domain transcription factor Brn3b/Brn-3.2/POU4f2 for their expression in the mouse embryonic retina. Development. 2004;131:1197–1210. PubMed
Pan L, Yang Z, Feng L, Gan L. Functional equivalence of Brn3 POU-domain transcription factors in mouse retinal neurogenesis. Development. 2005;132:703–712. PubMed
Schönberger J, Wang L, Shin JT, Kim SD, Depreux FFS, et al. Mutation in the transcriptional coactivator EYA4 causes dilated cardiomyopathy and sensorineural hearing loss. Nat Genet. 2005;37:418–422. PubMed
Stierwald M, Yanze N, Bamert RP, Kammermeier L, Schmid V. The Sine oculis/Six class family of homeobox genes in jellyfish with and without eyes: development and eye regeneration. Dev Biol. 2004;274:70–81. PubMed
Wang L, Sewell WF, Kim SD, Shin JT, MacRae CA, et al. Eya4 regulation of Na+/K+-ATPase is required for sensory system development in zebrafish. Development. 2008;135:3425–3434. PubMed
Weasner B, Salzer C, Kumar JP. Sine oculis, a member of the SIX family of transcription factors, directs eye formation. Dev Biol. 2007;303:756–771. PubMed PMC
Xiang M. Requirement for Brn-3b in Early Differentiation of Postmitotic Retinal Ganglion Cell Precursors. Dev Biol. 1998;197:155–169. PubMed
Zhou H, Yoshioka T, Nathans J. Retina-Derived POU-Domain Factor-l: A Complex POU-Domain Gene Implicated in the Development of Retinal Ganglion and Amacrine Cells. J Neurosci. 1996;16:2261–2274. PubMed PMC
Bryant J, Goodyear RJ, Richardson GP. Sensory organ development in the inner ear: molecular and cellular mechanisms. Br Med Bull. 2002;63:39–57. PubMed
Collin RWJ, Chellappa R, Pauw R-J, Vriend G, Oostrik J, et al. Missense Mutations in POU4F3 Cause Autosomal Dominant Hearing Impairment DFNA15 and Affect Subcellular Localization and DNA Binding. Hum Mutat. 2008;29:545–554. PubMed PMC
Fritzsch B, Beisel KW, Pauley S, Soukup G. Molecular evolution of the vertebrate mechanosensory cell and ear. Int J Dev Biol. 2007;51:663–678. PubMed PMC
Huang EJ, Zang K, Schmidt A, Saulys A, Xiang M, et al. POU domain factor Brn-3a controls the differentiation and survival of trigeminal neurons by regulating Trk receptor expression. Development. 1999;126:2869–2882. PubMed PMC
Xiang M, Gan L, Li D, Chen Z-Y, Zhou L, et al. Essential role of POU–domain factor Brn-3c in auditory and vestibular hair cell development. Proc Nat Acad Sci USA. 1997;94:9445–9450. PubMed PMC
Sarafi-Reinach TR, Melkman T, Hobert O, Sengupta P. The lin-11 LIM homeobox gene specifies olfactory and chemosensory neuron fates in C. elegans. Development. 2001;128:3269–3281. PubMed
Erkman L, Yates PA, McLaughlin T, McEvilly RJ, Whisenhunt T, et al. A POU Domain Transcription Factor–Dependent Program Regulates Axon Pathfinding in the Vertebrate Visual System. Neuron. 2000;28:779–792. PubMed
Hobert O, Ruvkun G. A Common Theme for LIM Homeobox Gene Function Across Phylogeny? Biol Bull. 1998;195:377–380. PubMed
Komiyama T, Johnson WA, Luo L, Jefferis GSXE. From Lineage to Wiring Specificity: POU Domain Transcription Factors Control Precise Connections of Drosophila Olfactory Projection Neurons. Cell. 2003;112:157–167. PubMed
Lee M-H, Salvaterra PM. Abnormal Chemosensory Jump 6 Is a Positive Transcriptional Regulator of the Cholinergic Gene Locus in Drosophila Olfactory Neurons. J Neurosci. 2002;22:5291–5299. PubMed PMC
Pierce-Shimomura JT, Faumont S, Gaston MR, Pearson BJ, Lockery SR. The homeobox gene lim-6 is required for distinct chemosensory representations in C. elegans. Nature. 2001;410:694–698. PubMed
Porter FD, Drago J, Xu Y, Cheema SS, Wassif C, et al. Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. Development. 1997;124:2935–2944. PubMed
Sze JY, Ruvkun G. Activity of the Caenorhabditis elegans UNC-86 POU transcriptiion factor modulates olfactory sensitivity. Proc Nat Acad Sci USA. 2003;100:9560–9565. PubMed PMC
Tichy AL, Ray A, Carlson JR. A New Drosophila POU Gene, pdm3, Acts in Odor Receptor Expression and Axon Targeting of Olfactory Neurons. J Neurosci. 2008;28:7121–7129. PubMed PMC
Hobert O, D'Alberti T, Liu Y, Ruvkun G. Control of Neural Development and Function in a Thermoregulatory Network by the LIM Homeobox Gene lin-11. J Neurosci. 1998;18:2084–2096. PubMed PMC
Hobert O, Mori I, Yamashita Y, Honda H, Ohshima Y, et al. Regulation of Interneuron Function in the C. elegans Thermoregulatory Pathway by the ttx-3 LIM Homeobox Gene. Neuron. 1997;19:345–357. PubMed
Cassata G, Kagoshima H, Andachi Y, Kohara Y, Dürrenberger MB, et al. The LIM Homeobox Gene ceh-14 Confers Thermosensory Function to the AFD Neurons in Caenorhabditis elegans. Neuron. 2000;25:587–597. PubMed
Colosimo ME, Brown A, Mukhopadhyay S, Gabel C, Lanjuin AE, et al. Identification of Thermosensory and Olfactory Neuron-Specific Genes via Expression Profiling of Single Neuron Types. Curr Biol. 2004;14:2245–2251. PubMed
Mori I. Genetics of Chemotaxis and Thermotaxis in the Nematode Caenorhabditis elegans. Annu Rev Genet. 1999;33:399–422. PubMed
Kuhara A, Okumura M, Kimata T, Tanizawa Y, Takano R, et al. Temperature Sensing by an Olfactory Neuron in a Circuit Controlling Behavior of C. elegans. Science. 2008;320:803–807. PubMed
Satterlee JS, Sasakura H, Kuhara A, Berkeley M, Mori I, et al. Specification of Thermosensory Neuron Fate in C. elegans Requires ttx-1, a Homolog of otd/Otx. Neuron. 2001;31:943–956. PubMed
Ball EE, C.Hayward D, Saint R, Miller DJ. A Simple Plan - Cnidarians and the Origins of Developmental Mechanisms. Nat Rev Genet. 2004;5:567–577. PubMed
Boero F, Schierwater B, Piraino S. Cnidarian milestones in metazoan evolution. Integr Comp Biol. 2007;47:693–700. PubMed
Galliot B, Quiquand M, Ghila L, Rosa Rd, Miljkovic-Licina M, et al. Origins of neurogenesis, a cnidarian view. Dev Biol. 2009;332:2–24. PubMed
Ryan AK, Rosenfeld MG. POU domain family values: flexibility, partnerships, and developmental codes. Genes Dev. 1997;11:1207–1225. PubMed
Kenyon KL, Li DJ, Clouser C, Tran S, Pignoni F. Fly SIX-Type Homeodomain Proteins Sine Oculis and Optix Partner With Different Cofactors During Eye Development. Dev Dyn. 2005;234:497–504. PubMed
Seimiya M, Gehring WJ. The Drosophila homeobox gene optix is capable of inducing ectopic eyes by an eyeless-independent mechanism. Development. 2000;127:1879–1886. PubMed
Ahn KJ, Frank Passero J, CrenshawIII EB. Otic Mesenchyme Expression of Cre Recombinase Directed by the Inner Ear Enhancer of the Brn4/Pou3f4 Gene. Genesis. 2009;47:137–141. PubMed
Mazet F, Hutt JA, Milloz J, Millard J, Graham A, et al. Molecular evidence from Ciona intestinalis for the evolutionary origin of vertebrate sensory placodes. Dev Biol. 2005;282:494–508. PubMed
Pan L, Deng M, Xie X, Gan L. ISL1 and BRN3B co-regulate the differentiation of murine retinal ganglion cells. Development. 2008;135:1981–1990. PubMed PMC
Phippard D, Lu L, Lee D, Saunders JC, Crenshaw EB., III Targeted Mutagenesis of the POU-Domain Gene Brn4/Pou3f4 Causes Developmental Defects in the Inner Ear. J Neurosci. 1999;19:5980–5989. PubMed PMC
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, et al. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology. 2010;59:307–321. PubMed
Satterlie RA. Do jellyfish have central nervous systems? J Exp Biol. 2011;214:1215–1223. PubMed
Koizumi O. Nerve Ring of the Hypostome in Hydra: Is It an Origin of the Central Nervous System of Bilaterian Animals? Brain Behav Evol. 2007;69:151–159. PubMed
Mackie GO, Meech RW. Central Circuitry in the Jellyfish Aglantha digitale. J Exp Biol. 2000;203:1797–1807. PubMed
Pang K, Martindale MQ. Developmental expression of homeobox genes in the ctenophore Mnemiopsis leidyi. Dev Genes Evol. 2008;218:307–319. PubMed
Cupit PM, Lennard ML, Hikima J-i, Warr GW, Cunningham C. Characterization of two POU transcription factor family members from the urochordate Oikopleura dioica. Gene. 2006;383:1–11. PubMed
Hanson IM. Mammalian homologues of the Drosophila eye specification genes. Cell Dev Biol. 2001;12:475–484. PubMed
O'Brien EK, Degnan BM. Developmental expression of a class IV POU gene in the gastropod Haliotis asinina supports a conserved role in sensory cell development in bilaterians. Dev Genes Evol. 2002;212:394–398. PubMed
Ramachandra NB, Gates RD, Ladurner P, Jacobs DK, Hartenstein V. Embryonic development in the primitive bilaterian Neochildia fusca: normal morphogenesis and isolation of POU genes Brn-1 and Brn-3. Dev Genes Evol. 2002;212:55–69. PubMed
Ryan JF, Burton PM, Mazza ME, Kwong GK, Mullikin JC, et al. The cnidarian-bilaterian ancestor possessed at least 56 homeoboxes: evidence from the starlet sea anemone, Nematostella vectensis. Genome Biol. 2006;7:R64. PubMed PMC
Sampath K, Stuart GW. Developmental Expression of Class III and IV POU Domain Genes in the Zebrafish. Biochem Biophys Res Commun. 1996;219:565–571. PubMed
Seimiya M, Watanabe Y, Kurosawa Y. Identification of POU-class homeobox genes in a freshwater sponge and the specific expression of these genes during differentiation. Eur J Biochem. 1997;243:27–31. PubMed
Shah D, Aurora D, Lance R, Stuart GW. POU Genes in Metazoans: Homologs in Sea Anemones, Snails, and Earthworms. DNA Sequence. 2000;11:457–461. PubMed
Spaniol P, Bornmann C, Hauptmann G, Gerster T. Class III POU genes of zebrafish are predominantly expressed in the central nervous system. Nucleic Acids Res. 1996;24:4874–4881. PubMed PMC
Wada S, Tokuoka M, Shoguchi E, Kobayashi K, Gregorio AD, et al. A genomewide survey of developmentally relevant genes in Ciona intestinalis II. Genes for homeobox transcription factors. Dev Genes Evol. 2003;213:222–234. PubMed
Ball EE, Hayward DC, Reece-Hoyes JS, Hislop NR, Samuel G, et al. Coral development: from classical embryology to molecular control. Int J Dev Biol. 2002;46:671–678. PubMed
Guder C, Philipp I, Lengfeld T, Watanabe H, Hobmayer B, et al. The Wnt code: cnidarians signal the way. Oncogene. 2006;25:7450–7460. PubMed
Kusserow A, Pang K, Sturm C, Hrouda M, Lentfer J, et al. Unexpected complexity of the Wnt gene family in a sea anemone. Nature. 2005;433:156–160. PubMed
Magie CR, Pang K, Martindale MQ. Genomic inventory and expression of Sox and Fox genes in the cnidarian Nematostella vectensis. Dev Genes Evol. 2005;215:618–630. PubMed
Heanue TA, Reshef R, Davis RJ, Mardon G, Oliver G, et al. Synergistic regulation of vertebrate muscle development by Dach2, Eya2, and Six1, homologs of genes required for Drosophila eye formation. Genes Dev. 1999;13:3231–3243. PubMed PMC
Milani R. Two new eye-shape mutant alleles in Drosophila melanogaster. D I S. 1941;14:52.
Seo H-C, Curtiss J, Mlodzik M, Fjose A. Six class homeobox genes in Drosophila belong to three distinct families and are involved in head development. Mech Dev. 1999;83:127±139. PubMed
Ryan JF, Pang K, Mullikin JC, Martindale MQ, et al. Nisc_Comparative_Sequencing_Program. The homeodomain complement of the ctenophore Mnemiopsis leidyi suggests that Ctenophora and Porifera diverged prior to the ParaHoxozoa. EvoDevo. 2010;1 doi: 10.1186/2041-9139-1181-1189. PubMed DOI PMC
Larroux C, Luke GN, Koopman P, Rokhsar DS, Shimeld SM, et al. Genesis and expansion of metazoan transcription factor gene classes. Mol Biol Evol 2008 PubMed
Lee SE, Gates RD, Jacobs DK. Gene Fishing: The Use of a Simple Protocol to Isolate Multiple Homeodomain Classes from Diverse Invertebrate Taxa. J Mol Evol. 2003;56:509–516. PubMed
Lesh-Laurie GE, Suchy PE. Scyphozoa and Cubozoa. Placozoa, Porifera, Cnidaria, and Ctenophora. 1991;Vol II:185–266.
Nakanishi N, Hartenstein V, Jacobs DK. Development of the rhopalial nervous system in Aurelia sp.1 (Cnidaria, Scyphozoa). Dev Genes Evol. 2009;219 PubMed PMC
Nakanishi N, Yuan D, Hartenstein V, Jacobs DK. Evolutionary origin of rhopalia: insights from cellular-level analyses of Otx and POU expression patterns in the developing rhopalial nervous system. Evol Dev. 2010;12:404–415. PubMed
Millane RC, Kanska J, Duffy DJ, Seoighe C, Cunningham S, et al. Induced stem cell neoplasia in a cnidarian by ectopic expression of a POU domain transcription factor. Development. 2011;138:2429–2439. PubMed
Bürglin TR. Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Res. 1997;25:4173–4180. PubMed PMC
Mukherjee K, Bürglin TR. Comprehensive Analysis of Animal TALE Homeobox Genes: New Conserved Motifs and Cases of Accelerated Evolution. J Mol Evol. 2007;65:137–153. PubMed
Bessarab DA, Chong S-W, Korzh V. Expression of Zebrafish six1 During Sensory Organ Development and Myogenesis. Dev Dyn. 2004;230:781–786. PubMed
Spitz F, Demignon J, Porteu A, Kahn A, Concordet J-P, et al. Expression of myogenin during embryogenesis is controlled by Six/sine oculis homeoproteins through a conserved MEF3 binding site. Proc Nat Acad Sci USA. 1998;95:14220–14225. PubMed PMC
Zhang J-M, Chen L, Krause M, Fire A, Paterson BM. Evolutionary Conservation of MyoD Function and Differential Utilization of E Proteins. Dev Biol. 1999;208:465–472. PubMed
Ozaki H, Watanabe Y, Takahashi K, Kitamura K, Tanaka A, et al. Six4, a Putative myogenin Gene Regulator, Is Not Essential for Mouse Embryonal Development. Mol Cell Biol. 2001;21:3343–3350. PubMed PMC
Appolloni I, Calzolari F, Corte G, Perris R, Malatesta P. Six3 Controls the Neural Progenitor Status in the Murine CNS. Cereb Cortex. 2008;18:553–562. PubMed
Ford HL, Kabingu EN, Bump EA, Mutter GL, Pardee AB. Abrogation of the G2 cell cycle checkpoint associated with overexpression of HSIX1: A possible mechanism of breast carcinogenesis. Proc Nat Acad Sci USA. 1998;95:12608–12613. PubMed PMC