Diversity, phylogeny and expression patterns of Pou and Six homeodomain transcription factors in hydrozoan jellyfish Craspedacusta sowerbyi

. 2012 ; 7 (4) : e36420. [epub] 20120430

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid22558464

Formation of all metazoan bodies is controlled by a group of selector genes including homeobox genes, highly conserved across the entire animal kingdom. The homeobox genes from Pou and Six classes are key members of the regulation cascades determining development of sensory organs, nervous system, gonads and muscles. Besides using common bilaterian models, more attention has recently been targeted at the identification and characterization of these genes within the basal metazoan phyla. Cnidaria as a diploblastic sister group to bilateria with simple and yet specialized organs are suitable models for studies on the sensory organ origin and the associated role of homeobox genes. In this work, Pou and Six homeobox genes, together with a broad range of other sensory-specific transcription factors, were identified in the transcriptome of hydrozoan jellyfish Craspedacusta sowerbyi. Phylogenetic analyses of Pou and Six proteins revealed cnidarian-specific sequence motifs and contributed to the classification of individual factors. The majority of the Craspedacusta sowerbyi Pou and Six homeobox genes are predominantly expressed in statocysts, manubrium and nerve ring, the tissues with sensory and nervous activities. The described diversity and expression patterns of Pou and Six factors in hydrozoan jellyfish highlight their evolutionarily conserved functions. This study extends the knowledge of the cnidarian genome complexity and shows that the transcriptome of hydrozoan jellyfish is generally rich in homeodomain transcription factors employed in the regulation of sensory and nervous functions.

Zobrazit více v PubMed

Banerjee-Basu S, Baxevanis AD. Molecular evolution of the homeodomain family of transcription factors. Nucleic Acids Res. 2001;29:3258–3269. PubMed PMC

Garcia-Fernàndez J. The genesis and evolution of homeobox gene clusters. Nat Rev Genet. 2005;6:881–892. PubMed

Holland PWH, Booth HAF, Bruford EA. Classification and nomenclature of all human homeobox genes. BMC Biol. 2007;5:47. PubMed PMC

Kappen C. Analysis of a complete homeobox gene repertoire: Implications for the evolution of diversity. Proc Nat Acad Sci USA. 2000;97:4481–4486. PubMed PMC

Zhao Y, Westphal H. Homeobox Genes and Human Genetic Disorders. Curr Mol Med. 2002;2:13–23. PubMed

Cillo C, Faiella A, Cantile M, Boncinelli E. Homeobox Genes and Cancer. Exp Cell Res. 1999;248:1–9. PubMed

Erwin DH, Davidson EH. The last common bilaterian ancestor. Development. 2002;129:3021–3032. PubMed

Galliot B, Quiquand M. A two-step process in the emergence of neurogenesis. Eur J Neurosci. 2011;34:847–862. PubMed

Galliot B, Vargas Cd, Miller D. Evolution of homeobox genes: Q50 Paired-like genes founded the Paired class. Dev Genes Evol. 1999;209:186–197. PubMed

Nam J, Nei M. Evolutionary change of the numbers of homeobox genes in bilateral animals. Mol Biol Evol. 2005;22:2386–2394. PubMed PMC

Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, et al. Sea Anemone Genome Reveals Ancestral Eumetazoan Gene Repertoire and Genomic Organization. Science. 2007;317:86–94. PubMed

Schierwater B, Kamm K, Srivastava M, Rokhsar D, Rosengarten RD, et al. The Early ANTP Gene Repertoire: Insights from the Placozoan Genome. PLoS ONE. 2008;3:e2457. PubMed PMC

Technau U, Rudd S, Maxwell P, Gordon PMK, Saina M, et al. Maintenance of ancestral complexity and non-metazoan genes in two basal cnidarians. Trends Genet. 2005;21:633–639. PubMed

Bharathan G, Janssen B-J, Kellogg EA, Sinha N. Did homeodomain proteins duplicate before the origin of angiosperms, fungi, and metazoa? Proc Nat Acad Sci USA. 1997;94:13749–13753. PubMed PMC

Veenstra GJC, Vliet PCvd, Destrée OHJ. POU domain transcription factors in embryonic development. Mol Biol Rep. 1997;24:130–155. PubMed

Bebenek IG, Gates RD, Morris J, Hartenstein V, Jacobs DK. sine oculis in basal Metazoa. Dev Genes Evol. 2004;214:342–351. PubMed

Arendt D. Evolution of eyes and photoreceptor cell types. Int J Dev Biol. 2003;47:563–571. PubMed

Gehring WJ. New Perspectives on Eye Development and the Evolution of Eyes and Photoreceptors. J Hered. 2005;96:171–184. PubMed

Kumar J, Moses K. Transcription factors in eye development: a gorgeous mosaic? Genes Dev. 1997;11:2023–2028. PubMed

Piatigorsky J, Kozmik Z. Cubozoan jellyfish: an Evo/Devo model for eyes and other sensory systems. Int J Dev Biol. 2004;48:719–729. PubMed

Plachetzki DC, Serb JM, Oakley TH. New insights into the evolutionary history of photoreceptor cells. Trends Ecol Evol. 2005;20:465–467. PubMed

Kozmik Z. Pax genes in eye development and evolution. Curr Opin Genet Dev. 2005;15:430–438. PubMed

Martin VJ. Photoreceptors of cnidarians. Can J Zool. 2002;80:1703–1722.

deCórdoba SR, Gallardo ME, López-Ríos J, Bovolenta P. The Human SIX Family of Homeobox Genes. Curr Genomics. 2001;2:231–242.

Andersen B, Rosenfeld MG. POU Domain Factors in the Neuroendocrine System: Lessons from Developmental Biology Provide Insights into Human Disease. Endocr Rev. 2001;22:2–35. PubMed

deMelo J, Qiu X, Du G, Cristante L, Eisenstat DD. Dlx1, Dlx2, Pax6, Brn3b, and Chx10 Homeobox Gene Expression Defines the Retinal Ganglion and Inner Nuclear Layers of the Developing and Adult Mouse Retina. J Comp Neuro. 2003;461:187–204. PubMed

Gan L, Wang SW, Huang Z, Klein WH. POU Domain Factor Brn-3b Is Essential for Retinal Ganglion Cell Differentiation and Survival but Not for Initial Cell Fate Specification. Dev Biol. 1999;210:469–480. PubMed

Kawakami K, Sato S, Ozaki H, Ikeda K. Six family genesÐstructure and function as transcription factors and their roles in development. BioEssays. 2000;22:616–626. PubMed

Kumar JP. The sine oculis homeobox (SIX) family of transcription factors as regulators of development and disease. Cell Mol Life Sci. 2009;66:565–583. PubMed PMC

Lanier J, Quina LA, Eng SR, Cox E, Turner EE. Brn3a target gene recognition in embryonic sensory neurons. Dev Biol. 2007;302:703–716. PubMed PMC

Mu X, Beremand PD, Zhao S, Pershad R, Sun H, et al. Discrete gene sets depend on POU domain transcription factor Brn3b/Brn-3.2/POU4f2 for their expression in the mouse embryonic retina. Development. 2004;131:1197–1210. PubMed

Pan L, Yang Z, Feng L, Gan L. Functional equivalence of Brn3 POU-domain transcription factors in mouse retinal neurogenesis. Development. 2005;132:703–712. PubMed

Schönberger J, Wang L, Shin JT, Kim SD, Depreux FFS, et al. Mutation in the transcriptional coactivator EYA4 causes dilated cardiomyopathy and sensorineural hearing loss. Nat Genet. 2005;37:418–422. PubMed

Stierwald M, Yanze N, Bamert RP, Kammermeier L, Schmid V. The Sine oculis/Six class family of homeobox genes in jellyfish with and without eyes: development and eye regeneration. Dev Biol. 2004;274:70–81. PubMed

Wang L, Sewell WF, Kim SD, Shin JT, MacRae CA, et al. Eya4 regulation of Na+/K+-ATPase is required for sensory system development in zebrafish. Development. 2008;135:3425–3434. PubMed

Weasner B, Salzer C, Kumar JP. Sine oculis, a member of the SIX family of transcription factors, directs eye formation. Dev Biol. 2007;303:756–771. PubMed PMC

Xiang M. Requirement for Brn-3b in Early Differentiation of Postmitotic Retinal Ganglion Cell Precursors. Dev Biol. 1998;197:155–169. PubMed

Zhou H, Yoshioka T, Nathans J. Retina-Derived POU-Domain Factor-l: A Complex POU-Domain Gene Implicated in the Development of Retinal Ganglion and Amacrine Cells. J Neurosci. 1996;16:2261–2274. PubMed PMC

Bryant J, Goodyear RJ, Richardson GP. Sensory organ development in the inner ear: molecular and cellular mechanisms. Br Med Bull. 2002;63:39–57. PubMed

Collin RWJ, Chellappa R, Pauw R-J, Vriend G, Oostrik J, et al. Missense Mutations in POU4F3 Cause Autosomal Dominant Hearing Impairment DFNA15 and Affect Subcellular Localization and DNA Binding. Hum Mutat. 2008;29:545–554. PubMed PMC

Fritzsch B, Beisel KW, Pauley S, Soukup G. Molecular evolution of the vertebrate mechanosensory cell and ear. Int J Dev Biol. 2007;51:663–678. PubMed PMC

Huang EJ, Zang K, Schmidt A, Saulys A, Xiang M, et al. POU domain factor Brn-3a controls the differentiation and survival of trigeminal neurons by regulating Trk receptor expression. Development. 1999;126:2869–2882. PubMed PMC

Xiang M, Gan L, Li D, Chen Z-Y, Zhou L, et al. Essential role of POU–domain factor Brn-3c in auditory and vestibular hair cell development. Proc Nat Acad Sci USA. 1997;94:9445–9450. PubMed PMC

Sarafi-Reinach TR, Melkman T, Hobert O, Sengupta P. The lin-11 LIM homeobox gene specifies olfactory and chemosensory neuron fates in C. elegans. Development. 2001;128:3269–3281. PubMed

Erkman L, Yates PA, McLaughlin T, McEvilly RJ, Whisenhunt T, et al. A POU Domain Transcription Factor–Dependent Program Regulates Axon Pathfinding in the Vertebrate Visual System. Neuron. 2000;28:779–792. PubMed

Hobert O, Ruvkun G. A Common Theme for LIM Homeobox Gene Function Across Phylogeny? Biol Bull. 1998;195:377–380. PubMed

Komiyama T, Johnson WA, Luo L, Jefferis GSXE. From Lineage to Wiring Specificity: POU Domain Transcription Factors Control Precise Connections of Drosophila Olfactory Projection Neurons. Cell. 2003;112:157–167. PubMed

Lee M-H, Salvaterra PM. Abnormal Chemosensory Jump 6 Is a Positive Transcriptional Regulator of the Cholinergic Gene Locus in Drosophila Olfactory Neurons. J Neurosci. 2002;22:5291–5299. PubMed PMC

Pierce-Shimomura JT, Faumont S, Gaston MR, Pearson BJ, Lockery SR. The homeobox gene lim-6 is required for distinct chemosensory representations in C. elegans. Nature. 2001;410:694–698. PubMed

Porter FD, Drago J, Xu Y, Cheema SS, Wassif C, et al. Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. Development. 1997;124:2935–2944. PubMed

Sze JY, Ruvkun G. Activity of the Caenorhabditis elegans UNC-86 POU transcriptiion factor modulates olfactory sensitivity. Proc Nat Acad Sci USA. 2003;100:9560–9565. PubMed PMC

Tichy AL, Ray A, Carlson JR. A New Drosophila POU Gene, pdm3, Acts in Odor Receptor Expression and Axon Targeting of Olfactory Neurons. J Neurosci. 2008;28:7121–7129. PubMed PMC

Hobert O, D'Alberti T, Liu Y, Ruvkun G. Control of Neural Development and Function in a Thermoregulatory Network by the LIM Homeobox Gene lin-11. J Neurosci. 1998;18:2084–2096. PubMed PMC

Hobert O, Mori I, Yamashita Y, Honda H, Ohshima Y, et al. Regulation of Interneuron Function in the C. elegans Thermoregulatory Pathway by the ttx-3 LIM Homeobox Gene. Neuron. 1997;19:345–357. PubMed

Cassata G, Kagoshima H, Andachi Y, Kohara Y, Dürrenberger MB, et al. The LIM Homeobox Gene ceh-14 Confers Thermosensory Function to the AFD Neurons in Caenorhabditis elegans. Neuron. 2000;25:587–597. PubMed

Colosimo ME, Brown A, Mukhopadhyay S, Gabel C, Lanjuin AE, et al. Identification of Thermosensory and Olfactory Neuron-Specific Genes via Expression Profiling of Single Neuron Types. Curr Biol. 2004;14:2245–2251. PubMed

Mori I. Genetics of Chemotaxis and Thermotaxis in the Nematode Caenorhabditis elegans. Annu Rev Genet. 1999;33:399–422. PubMed

Kuhara A, Okumura M, Kimata T, Tanizawa Y, Takano R, et al. Temperature Sensing by an Olfactory Neuron in a Circuit Controlling Behavior of C. elegans. Science. 2008;320:803–807. PubMed

Satterlee JS, Sasakura H, Kuhara A, Berkeley M, Mori I, et al. Specification of Thermosensory Neuron Fate in C. elegans Requires ttx-1, a Homolog of otd/Otx. Neuron. 2001;31:943–956. PubMed

Ball EE, C.Hayward D, Saint R, Miller DJ. A Simple Plan - Cnidarians and the Origins of Developmental Mechanisms. Nat Rev Genet. 2004;5:567–577. PubMed

Boero F, Schierwater B, Piraino S. Cnidarian milestones in metazoan evolution. Integr Comp Biol. 2007;47:693–700. PubMed

Galliot B, Quiquand M, Ghila L, Rosa Rd, Miljkovic-Licina M, et al. Origins of neurogenesis, a cnidarian view. Dev Biol. 2009;332:2–24. PubMed

Ryan AK, Rosenfeld MG. POU domain family values: flexibility, partnerships, and developmental codes. Genes Dev. 1997;11:1207–1225. PubMed

Kenyon KL, Li DJ, Clouser C, Tran S, Pignoni F. Fly SIX-Type Homeodomain Proteins Sine Oculis and Optix Partner With Different Cofactors During Eye Development. Dev Dyn. 2005;234:497–504. PubMed

Seimiya M, Gehring WJ. The Drosophila homeobox gene optix is capable of inducing ectopic eyes by an eyeless-independent mechanism. Development. 2000;127:1879–1886. PubMed

Ahn KJ, Frank Passero J, CrenshawIII EB. Otic Mesenchyme Expression of Cre Recombinase Directed by the Inner Ear Enhancer of the Brn4/Pou3f4 Gene. Genesis. 2009;47:137–141. PubMed

Mazet F, Hutt JA, Milloz J, Millard J, Graham A, et al. Molecular evidence from Ciona intestinalis for the evolutionary origin of vertebrate sensory placodes. Dev Biol. 2005;282:494–508. PubMed

Pan L, Deng M, Xie X, Gan L. ISL1 and BRN3B co-regulate the differentiation of murine retinal ganglion cells. Development. 2008;135:1981–1990. PubMed PMC

Phippard D, Lu L, Lee D, Saunders JC, Crenshaw EB., III Targeted Mutagenesis of the POU-Domain Gene Brn4/Pou3f4 Causes Developmental Defects in the Inner Ear. J Neurosci. 1999;19:5980–5989. PubMed PMC

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, et al. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology. 2010;59:307–321. PubMed

Satterlie RA. Do jellyfish have central nervous systems? J Exp Biol. 2011;214:1215–1223. PubMed

Koizumi O. Nerve Ring of the Hypostome in Hydra: Is It an Origin of the Central Nervous System of Bilaterian Animals? Brain Behav Evol. 2007;69:151–159. PubMed

Mackie GO, Meech RW. Central Circuitry in the Jellyfish Aglantha digitale. J Exp Biol. 2000;203:1797–1807. PubMed

Pang K, Martindale MQ. Developmental expression of homeobox genes in the ctenophore Mnemiopsis leidyi. Dev Genes Evol. 2008;218:307–319. PubMed

Cupit PM, Lennard ML, Hikima J-i, Warr GW, Cunningham C. Characterization of two POU transcription factor family members from the urochordate Oikopleura dioica. Gene. 2006;383:1–11. PubMed

Hanson IM. Mammalian homologues of the Drosophila eye specification genes. Cell Dev Biol. 2001;12:475–484. PubMed

O'Brien EK, Degnan BM. Developmental expression of a class IV POU gene in the gastropod Haliotis asinina supports a conserved role in sensory cell development in bilaterians. Dev Genes Evol. 2002;212:394–398. PubMed

Ramachandra NB, Gates RD, Ladurner P, Jacobs DK, Hartenstein V. Embryonic development in the primitive bilaterian Neochildia fusca: normal morphogenesis and isolation of POU genes Brn-1 and Brn-3. Dev Genes Evol. 2002;212:55–69. PubMed

Ryan JF, Burton PM, Mazza ME, Kwong GK, Mullikin JC, et al. The cnidarian-bilaterian ancestor possessed at least 56 homeoboxes: evidence from the starlet sea anemone, Nematostella vectensis. Genome Biol. 2006;7:R64. PubMed PMC

Sampath K, Stuart GW. Developmental Expression of Class III and IV POU Domain Genes in the Zebrafish. Biochem Biophys Res Commun. 1996;219:565–571. PubMed

Seimiya M, Watanabe Y, Kurosawa Y. Identification of POU-class homeobox genes in a freshwater sponge and the specific expression of these genes during differentiation. Eur J Biochem. 1997;243:27–31. PubMed

Shah D, Aurora D, Lance R, Stuart GW. POU Genes in Metazoans: Homologs in Sea Anemones, Snails, and Earthworms. DNA Sequence. 2000;11:457–461. PubMed

Spaniol P, Bornmann C, Hauptmann G, Gerster T. Class III POU genes of zebrafish are predominantly expressed in the central nervous system. Nucleic Acids Res. 1996;24:4874–4881. PubMed PMC

Wada S, Tokuoka M, Shoguchi E, Kobayashi K, Gregorio AD, et al. A genomewide survey of developmentally relevant genes in Ciona intestinalis II. Genes for homeobox transcription factors. Dev Genes Evol. 2003;213:222–234. PubMed

Ball EE, Hayward DC, Reece-Hoyes JS, Hislop NR, Samuel G, et al. Coral development: from classical embryology to molecular control. Int J Dev Biol. 2002;46:671–678. PubMed

Guder C, Philipp I, Lengfeld T, Watanabe H, Hobmayer B, et al. The Wnt code: cnidarians signal the way. Oncogene. 2006;25:7450–7460. PubMed

Kusserow A, Pang K, Sturm C, Hrouda M, Lentfer J, et al. Unexpected complexity of the Wnt gene family in a sea anemone. Nature. 2005;433:156–160. PubMed

Magie CR, Pang K, Martindale MQ. Genomic inventory and expression of Sox and Fox genes in the cnidarian Nematostella vectensis. Dev Genes Evol. 2005;215:618–630. PubMed

Heanue TA, Reshef R, Davis RJ, Mardon G, Oliver G, et al. Synergistic regulation of vertebrate muscle development by Dach2, Eya2, and Six1, homologs of genes required for Drosophila eye formation. Genes Dev. 1999;13:3231–3243. PubMed PMC

Milani R. Two new eye-shape mutant alleles in Drosophila melanogaster. D I S. 1941;14:52.

Seo H-C, Curtiss J, Mlodzik M, Fjose A. Six class homeobox genes in Drosophila belong to three distinct families and are involved in head development. Mech Dev. 1999;83:127±139. PubMed

Ryan JF, Pang K, Mullikin JC, Martindale MQ, et al. Nisc_Comparative_Sequencing_Program. The homeodomain complement of the ctenophore Mnemiopsis leidyi suggests that Ctenophora and Porifera diverged prior to the ParaHoxozoa. EvoDevo. 2010;1 doi: 10.1186/2041-9139-1181-1189. PubMed DOI PMC

Larroux C, Luke GN, Koopman P, Rokhsar DS, Shimeld SM, et al. Genesis and expansion of metazoan transcription factor gene classes. Mol Biol Evol 2008 PubMed

Lee SE, Gates RD, Jacobs DK. Gene Fishing: The Use of a Simple Protocol to Isolate Multiple Homeodomain Classes from Diverse Invertebrate Taxa. J Mol Evol. 2003;56:509–516. PubMed

Lesh-Laurie GE, Suchy PE. Scyphozoa and Cubozoa. Placozoa, Porifera, Cnidaria, and Ctenophora. 1991;Vol II:185–266.

Nakanishi N, Hartenstein V, Jacobs DK. Development of the rhopalial nervous system in Aurelia sp.1 (Cnidaria, Scyphozoa). Dev Genes Evol. 2009;219 PubMed PMC

Nakanishi N, Yuan D, Hartenstein V, Jacobs DK. Evolutionary origin of rhopalia: insights from cellular-level analyses of Otx and POU expression patterns in the developing rhopalial nervous system. Evol Dev. 2010;12:404–415. PubMed

Millane RC, Kanska J, Duffy DJ, Seoighe C, Cunningham S, et al. Induced stem cell neoplasia in a cnidarian by ectopic expression of a POU domain transcription factor. Development. 2011;138:2429–2439. PubMed

Bürglin TR. Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Res. 1997;25:4173–4180. PubMed PMC

Mukherjee K, Bürglin TR. Comprehensive Analysis of Animal TALE Homeobox Genes: New Conserved Motifs and Cases of Accelerated Evolution. J Mol Evol. 2007;65:137–153. PubMed

Bessarab DA, Chong S-W, Korzh V. Expression of Zebrafish six1 During Sensory Organ Development and Myogenesis. Dev Dyn. 2004;230:781–786. PubMed

Spitz F, Demignon J, Porteu A, Kahn A, Concordet J-P, et al. Expression of myogenin during embryogenesis is controlled by Six/sine oculis homeoproteins through a conserved MEF3 binding site. Proc Nat Acad Sci USA. 1998;95:14220–14225. PubMed PMC

Zhang J-M, Chen L, Krause M, Fire A, Paterson BM. Evolutionary Conservation of MyoD Function and Differential Utilization of E Proteins. Dev Biol. 1999;208:465–472. PubMed

Ozaki H, Watanabe Y, Takahashi K, Kitamura K, Tanaka A, et al. Six4, a Putative myogenin Gene Regulator, Is Not Essential for Mouse Embryonal Development. Mol Cell Biol. 2001;21:3343–3350. PubMed PMC

Appolloni I, Calzolari F, Corte G, Perris R, Malatesta P. Six3 Controls the Neural Progenitor Status in the Murine CNS. Cereb Cortex. 2008;18:553–562. PubMed

Ford HL, Kabingu EN, Bump EA, Mutter GL, Pardee AB. Abrogation of the G2 cell cycle checkpoint associated with overexpression of HSIX1: A possible mechanism of breast carcinogenesis. Proc Nat Acad Sci USA. 1998;95:12608–12613. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...