Cytokinin-induced cell death is associated with elevated expression of alternative oxidase in tobacco BY-2 cells

. 2013 Oct ; 250 (5) : 1195-202. [epub] 20130507

Jazyk angličtina Země Rakousko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23649227

N(6)-benzyladenine (BA) and N(6)-benzyladenosine ([9R]BA) induce massive production of reactive oxygen species (ROS) that is eventually followed by a loss of cell viability in tobacco BY-2 cells (Mlejnek et al. Plant Cell Environ 26:1723-1735, 2003, Plant Sci 168:389-395, 2005). Results presented in this work suggest that the main sources of ROS are likely mitochondria and that the maintenance of the mitochondrial transmembrane potential is crucial for ROS production in cytokinin-treaded BY-2 cells. Therefore, the possible involvement of alternative oxidase (AOX) in cell death process induced by BA and [9R]BA was studied. About three- to fourfold increase in mRNA levels of AOX1 was observed a few hours after the BA and [9R]BA addition into the growth medium. The elevated expression of AOX1 mRNA could be prevented by adding adenine and adenosine which simultaneously reduced the cytotoxic effects of BA and [9R]BA, respectively. N(6)-benzyladenine 7-β-D-glucoside ([7G]BA) which is a common non-toxic metabolite of BA and [9R]BA did not affect the AOX1 mRNA expression. Although AOX1 seemed to be involved in protection of BY-2 cells against the abiotic stress induced by BA and [9R]BA, the results do not support the idea that it protects cells from death exclusively by scavenging of reactive oxygen species. Indeed, N-propyl gallate, an inhibitor of AOX, decreased cell survival despite it concomitantly decreased the ROS production. This finding is in contrast to the effect of salicylhydroxamic acid, another well-known inhibitor of AOX, which also increased the number of dying cells while it increased the ROS production.

Zobrazit více v PubMed

Annu Rev Plant Biol. 2004;55:23-39 PubMed

Plant Cell. 1996 Mar;8(3):393-402 PubMed

Plant Physiol. 2006 Jun;141(2):384-90 PubMed

Plant Physiol. 1971 Jan;47(1):124-8 PubMed

Biochem J. 1967 Dec;105(3):1147-62 PubMed

Biochem J. 1997 Mar 15;322 ( Pt 3):681-92 PubMed

Antimicrob Agents Chemother. 1977 Apr;11(4):615-8 PubMed

Annu Rev Plant Biol. 2004;55:373-99 PubMed

Apoptosis. 2010 Mar;15(3):249-56 PubMed

Trends Plant Sci. 2007 Mar;12(3):125-34 PubMed

Planta. 2002 May;215(1):158-66 PubMed

Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):8271-6 PubMed

Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:561-591 PubMed

Plant J. 2004 Nov;40(4):596-610 PubMed

Mol Plant Pathol. 2010 May;11(3):429-40 PubMed

Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12094-7 PubMed

Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48:703-734 PubMed

FEBS Lett. 1993 Aug 30;329(3):259-62 PubMed

FEBS Lett. 1999 Dec 10;463(1-2):151-4 PubMed

Chem Res Toxicol. 1992 Mar-Apr;5(2):227-31 PubMed

Annu Rev Cell Biol. 1991;7:663-98 PubMed

Physiol Plant. 2009 Dec;137(4):354-61 PubMed

Plant Physiol. 1999 Dec;121(4):1309-20 PubMed

Plant Physiol. 1978 Sep;62(3):470-2 PubMed

Plant Physiol. 2002 Aug;129(4):1908-20 PubMed

Biochim Biophys Acta. 2006 Jul;1757(7):730-41 PubMed

Trends Cell Biol. 1998 Jul;8(7):267-71 PubMed

Biochim Biophys Acta. 1998 Feb 25;1363(2):100-24 PubMed

Anal Biochem. 1987 Apr;162(1):156-9 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...