Effect of induction therapy on the expression of molecular markers associated with rejection and tolerance
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26286066
PubMed Central
PMC4545708
DOI
10.1186/s12882-015-0141-2
PII: 10.1186/s12882-015-0141-2
Knihovny.cz E-zdroje
- MeSH
- antigeny CD3 genetika MeSH
- antilymfocytární sérum terapeutické užití MeSH
- basiliximab MeSH
- dospělí MeSH
- exprese genu účinky léků MeSH
- forkhead transkripční faktory genetika MeSH
- granzymy genetika MeSH
- imunologická tolerance účinky léků genetika MeSH
- imunosupresiva terapeutické užití MeSH
- imunosupresivní léčba metody MeSH
- indukční chemoterapie metody MeSH
- inhibitory kalcineurinu terapeutické užití MeSH
- lidé středního věku MeSH
- lidé MeSH
- mannosidasy genetika MeSH
- messenger RNA krev MeSH
- mladý dospělý MeSH
- monoklonální protilátky terapeutické užití MeSH
- NKT buňky účinky léků imunologie MeSH
- perforin genetika MeSH
- počet lymfocytů MeSH
- prospektivní studie MeSH
- regulační T-lymfocyty účinky léků imunologie MeSH
- rejekce štěpu genetika imunologie prevence a kontrola MeSH
- rekombinantní fúzní proteiny terapeutické užití MeSH
- senioři MeSH
- transplantace ledvin metody MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny CD3 MeSH
- antilymfocytární sérum MeSH
- basiliximab MeSH
- CD3 antigen, zeta chain MeSH Prohlížeč
- forkhead transkripční faktory MeSH
- FOXP3 protein, human MeSH Prohlížeč
- granzymy MeSH
- GZMB protein, human MeSH Prohlížeč
- imunosupresiva MeSH
- inhibitory kalcineurinu MeSH
- mannosidasy MeSH
- mannosyl-oligosaccharide 1,2-alpha-mannosidase MeSH Prohlížeč
- messenger RNA MeSH
- monoklonální protilátky MeSH
- perforin MeSH
- PRF1 protein, human MeSH Prohlížeč
- rekombinantní fúzní proteiny MeSH
BACKGROUND: Induction therapy can improve kidney transplantation (KTx) outcomes, but little is known about the mechanisms underlying its effects. METHODS: The mRNA levels of T cell-related genes associated with tolerance or rejection (CD247, GZMB, PRF1, FOXP3, MAN1A1, TCAIM, and TLR5) and lymphocyte subpopulations were monitored prospectively in the peripheral blood of 60 kidney transplant recipients before and 7, 14, 21, 28, 60, 90 days, 6 months, and 12 months after KTx. Patients were treated with calcineurin inhibitor-based triple immunosuppression and induction with rabbit anti-thymocyte globulin (rATG, n = 24), basiliximab (n = 17), or without induction (no-induction, n = 19). A generalized linear mixed model with gamma distribution for repeated measures, adjusted for rejection, recipient/donor age and delayed graft function, was used for statistical analysis. RESULTS: rATG treatment caused an intense reduction in all T cell type population and natural killer (NK) cells within 7 days, then a slow increase and repopulation was observed. This was also noticed in the expression levels of CD247, FOXP3, GZMB, and PRF1. The basiliximab group exhibited higher CD247, GZMB, FOXP3 and TCAIM mRNA levels and regulatory T cell (Treg) counts than the no-induction group. The levels of MAN1A1 and TLR5 mRNA expressions were increased, whereas TCAIM decreased in the rATG group as compared with those in the no-induction group. CONCLUSION: The rATG induction therapy was associated with decreased T and NK cell-related transcript levels and with upregulation of two rejection-associated transcripts (MAN1A1 and TLR5) shortly after KTx. Basiliximab treatment was associated with increased absolute number of Treg cells, and increased level of FOXP3 and TCAIM expression.
Zobrazit více v PubMed
Jardine AG, Gaston RS, Fellstrom BC, Holdaas H. Prevention of cardiovascular disease in adult recipients of kidney transplants. Lancet. 2011;378:1419–1427. doi: 10.1016/S0140-6736(11)61334-2. PubMed DOI
Li B, Hartono C, Ding R, Sharma VK, Ramaswamy R, Qian B, et al. Noninvasive diagnosis of renal-allograft rejection by measurement of messenger RNA for perforin and granzyme B in urine. N Engl J Med. 2001;344:947–954. doi: 10.1056/NEJM200103293441301. PubMed DOI
Simon T, Opelz G, Wiesel M, Ott RC, Susal C. Serial peripheral blood perforin and granzyme B gene expression measurements for prediction of acute rejection in kidney graft recipients. Am J Transplant. 2003;3:1121–1127. doi: 10.1034/j.1600-6143.2003.00187.x. PubMed DOI
Alvarez CM, Paris SC, Arango L, Arbelaez M, Garcia LF. Kidney transplant patients with long-term graft survival have altered expression of molecules associated with T-cell activation. Transplantation. 2004;78:1541–1547. doi: 10.1097/01.TP.0000140968.17770.C1. PubMed DOI
Sagoo P, Perucha E, Sawitzki B, Tomiuk S, Stephens DA, Miqueu P, et al. Development of a cross-platform biomarker signature to detect renal transplant tolerance in humans. J Clin Invest. 2010;120:1848–1861. doi: 10.1172/JCI39922. PubMed DOI PMC
Sawitzki B, Bushell A, Steger U, Jones N, Risch K, Siepert A, et al. Identification of gene markers for the prediction of allograft rejection or permanent acceptance. Am J Transplant. 2007;7:1091–1102. doi: 10.1111/j.1600-6143.2007.01768.x. PubMed DOI
Louis S, Braudeau C, Giral M, Dupont A, Moizant F, Robillard N, et al. Contrasting CD25hiCD4 + T cells/FOXP3 patterns in chronic rejection and operational drug-free tolerance. Transplantation. 2006;81:398–407. doi: 10.1097/01.tp.0000203166.44968.86. PubMed DOI
Iwase H, Kobayashi T, Kodera Y, Miwa Y, Kuzuya T, Iwasaki K, Haneda M, et al. Clinical significance of regulatory T-cell-related gene expression in peripheral blood after renal transplantation. Transplantation. 2011;91:191–198. doi: 10.1097/TP.0b013e3181ffbab4. PubMed DOI
Wood KJ, Goto R. Mechanisms of rejection: current perspectives. Transplantation. 2012;93:1–10. doi: 10.1097/TP.0b013e31823cab44. PubMed DOI
Baniyash M. TCR zeta-chain downregulation: curtailing an excessive inflammatory immune response. Nat Rev Immunol. 2004;4:675–687. doi: 10.1038/nri1434. PubMed DOI
Bluestone JA. Mechanisms of tolerance. Immunol Rev. 2011;241:5–19. doi: 10.1111/j.1600-065X.2011.01019.x. PubMed DOI
Herscovics A. Structure and function of Class I alpha 1,2-mannosidases involved in glycoprotein synthesis and endoplasmic reticulum quality control. Biochimie. 2001;83:757–762. doi: 10.1016/S0300-9084(01)01319-0. PubMed DOI
Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant. 2009;9 Suppl 3:S1–155. PubMed
Krystufkova E, Sekerkova A, Striz I, Brabcova I, Girmanova E, Viklicky O. Regulatory T cells in kidney transplant recipients: the effect of induction immunosuppression therapy. Nephrol Dial Transplant. 2012;27:2576–2582. doi: 10.1093/ndt/gfr693. PubMed DOI
Gurkan S, Luan Y, Dhillon N, Allam SR, Montague T, Bromberg JS, et al. Immune reconstitution following rabbit antithymocyte globulin. Am J Transplant. 2010;10:2132–2141. doi: 10.1111/j.1600-6143.2010.03210.x. PubMed DOI PMC
Vondran FW, Timrott K, Tross J, Kollrich S, Schwarz A, Lehner F, et al. Impact of Basiliximab on regulatory T-cells early after kidney transplantation: down-regulation of CD25 by receptor modulation. Transpl Int. 2010;23:514–523. doi: 10.1111/j.1432-2277.2009.01013.x. PubMed DOI
Solez K, Colvin RB, Racusen LC, Sis B, Halloran PF, Birk PE, et al. Banff '05 Meeting Report: differential diagnosis of chronic allograft injury and elimination of chronic allograft nephropathy ('CAN') Am J Transplant. 2007;7:518–526. doi: 10.1111/j.1600-6143.2006.01688.x. PubMed DOI
Wang Z, Shi BY, Qian YY, Cai M, Wang Q. Short-term anti-CD25 monoclonal antibody administration down-regulated CD25 expression without eliminating the neogenetic functional regulatory T cells in kidney transplantation. Clin Exp Immunol. 2009;155:496–503. doi: 10.1111/j.1365-2249.2008.03847.x. PubMed DOI PMC
Abadja F, Alamartine E, Berthoux F, Mariat C, Genin C, Lambert C. Quantification of circulating regulatory T cells by flow cytometry in kidney transplant patients after basiliximab induction therapy. Transplantation. 2010;89:366–368. doi: 10.1097/TP.0b013e3181bbbd67. PubMed DOI
Kho MM, Bouvy AP, Cadogan M, Kraaijeveld R, Baan CC, Weimar W. The effect of low and ultra-low dosages Thymoglobulin on peripheral T, B and NK cells in kidney transplant recipients. Transpl Immunol. 2012;26:186–190. doi: 10.1016/j.trim.2012.02.003. PubMed DOI
Sageshima J, Ciancio G, Guerra G, Gaynor JJ, Cova D, Zarak A, et al. Prolonged lymphocyte depletion by single-dose rabbit anti-thymocyte globulin and alemtuzumab in kidney transplantation. Transpl Immunol. 2011;25:104–111. doi: 10.1016/j.trim.2011.07.002. PubMed DOI
Vacher-Coponat H, Brunet C, Moal V, Loundou A, Bonnet E, Lyonnet L, et al. Tacrolimus/mycophenolate mofetil improved natural killer lymphocyte reconstitution one year after kidney transplant by reference to cyclosporine/azathioprine. Transplantation. 2006;82:558–566. doi: 10.1097/01.tp.0000229390.01369.4a. PubMed DOI
Hadaya K, Avila Y, Valloton L, de Rham C, Bandelier C, Ferrari-Lacraz S, et al. Natural killer cell receptor--repertoire and functions after induction therapy by polyclonal rabbit anti-thymocyte globulin in unsensitized kidney transplant recipients. Clin Immunol. 2010;137:250–260. doi: 10.1016/j.clim.2010.07.004. PubMed DOI
Sewgobind VD, Kho MM, van der Laan LJ, Hendrikx TK, van Dam T, Tilanus HW, et al. The effect of rabbit anti-thymocyte globulin induction therapy on regulatory T cells in kidney transplant patients. Nephrol Dial Transplant. 2009;24:1635–1644. doi: 10.1093/ndt/gfn778. PubMed DOI
Simon T, Opelz G, Weimer R, Wiesel M, Feustel A, Ott RC, et al. The effect of ATG on cytokine and cytotoxic T-lymphocyte gene expression in renal allograft recipients during the early post-transplant period. Clin Transplant. 2003;17:217–224. doi: 10.1034/j.1399-0012.2003.00031.x. PubMed DOI
Kapturczak MH, Meier-Kriesche HU, Kaplan B. Pharmacology of calcineurin antagonists. Transplant Proc. 2004;36:25S–32S. doi: 10.1016/j.transproceed.2004.01.018. PubMed DOI
Janas ML, Groves P, Kienzle N, Kelso A. IL-2 regulates perforin and granzyme gene expression in CD8+ T cells independently of its effects on survival and proliferation. J Immunol. 2005;175:8003–8010. doi: 10.4049/jimmunol.175.12.8003. PubMed DOI
Burchill MA, Yang J, Vogtenhuber C, Blazar BR, Farrar MA. IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol. 2007;178:280–290. doi: 10.4049/jimmunol.178.1.280. PubMed DOI
Murawski MR, Litherland SA, Clare-Salzler MJ, Davoodi-Semiromi A. Upregulation of Foxp3 expression in mouse and human Treg is IL-2/STAT5 dependent: implications for the NOD STAT5B mutation in diabetes pathogenesis. Ann N Y Acad Sci. 2006;1079:198–204. doi: 10.1196/annals.1375.031. PubMed DOI
Cheriyan VT, Thomas C, Balaram P. Augmentation of T-cell immune responses and signal transduction proteins in oral cancer patients: potential for IL-2-mediated immunotherapy. J Cancer Res Clin Oncol. 2011;137:1435–1444. doi: 10.1007/s00432-011-1012-2. PubMed DOI PMC
Vogel SZ, Schlickeiser S, Jurchott K, Akyuez L, Schumann J, Appelt C, et al. TCAIM decreases T cell priming capacity of dendritic cells by inhibiting TLR-induced Ca2+ influx and IL-2 production. J Immunol. 2015;194:3136–3146. doi: 10.4049/jimmunol.1400713. PubMed DOI
Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol. 2004;5:987–995. doi: 10.1038/ni1112. PubMed DOI
Jenner J, Kerst G, Handgretinger R, Muller I. Increased alpha2,6-sialylation of surface proteins on tolerogenic, immature dendritic cells and regulatory T cells. Exp Hematol. 2006;34:1212–1218. doi: 10.1016/j.exphem.2006.04.016. PubMed DOI
Sawitzki B, Brunstein C, Meisel C, Schumann J, Vogt K, Appelt C, et al. Prevention of graft-versus-host disease by adoptive T regulatory therapy is associated with active repression of peripheral blood Toll-like receptor 5 mRNA expression. Biol Blood Marrow Transplant. 2014;20:173–182. doi: 10.1016/j.bbmt.2013.10.022. PubMed DOI PMC
Uematsu S, Fujimoto K, Jang MH, Yang BG, Jung YJ, Nishiyama M, et al. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat Immunol. 2008;9:769–776. doi: 10.1038/ni.1622. PubMed DOI
Braudeau C, Ashton-Chess J, Giral M, Dugast E, Louis S, Pallier A, et al. Contrasted blood and intragraft toll-like receptor 4 mRNA profiles in operational tolerance versus chronic rejection in kidney transplant recipients. Transplantation. 2008;86:130–136. doi: 10.1097/TP.0b013e31817b8dc5. PubMed DOI
Gebuhr I, Keeren K, Vogt K, Höflich C, Appelt C, Schlieer U, et al. Differential expression and function of alpha-mannosidase I in stimulated naive and memory CD4+ T cells. J Immunother. 2011;34:428–437. doi: 10.1097/CJI.0b013e31821dcf23. PubMed DOI
Keeren K, Friedrich M, Gebuhr I, Philipp S, Sabat R, Sterry W, et al. Expression of tolerance associated gene-1, a mitochondrial protein inhibiting T cell activation, can be used to predict response to immune modulating therapies. J Immunol. 2009;183:4077–4087. doi: 10.4049/jimmunol.0804351. PubMed DOI
Hutchinson JA, Riquelme P, Sawitzki B, Tomiuk S, Miqueu P, Zuhayra M, et al. Cutting Edge: Immunological consequences and trafficking of human regulatory macrophages administered to renal transplant recipients. J Immunol. 2011;187:2072–2078. doi: 10.4049/jimmunol.1100762. PubMed DOI
Siepert A, Ahrlich S, Vogt K, Appelt C, Stanko K, Kühl A, et al. Permanent CNI treatment for prevention of renal allograft rejection in sensitized hosts can be replaced by regulatory T cells. Am J Transplant. 2012;12:2384–2394. doi: 10.1111/j.1600-6143.2012.04143.x. PubMed DOI
Schumann J, Stanko K, Woertge S, Appelt C, Schumann M, Kühl AA, et al. The Mitochondrial Protein TCAIM Regulates Activation of T Cells and Thereby Promotes Tolerance Induction of Allogeneic Transplants. Am J Transplant. 2014;14:2723–2735. doi: 10.1111/ajt.12941. PubMed DOI
Bluestone JA, Liu W, Yabu JM, Laszik ZG, Putnam A, Belingheri M, et al. The effect of costimulatory and interleukin 2 receptor blockade on regulatory T cells in renal transplantation. Am J Transplant. 2008;8:2086–2096. doi: 10.1111/j.1600-6143.2008.02377.x. PubMed DOI PMC
de Goer de Herve MG, Gonzales E, Hendel-Chavez H, Décline JL, Mourier O, Abbed K, et al. CD25 appears non essential for human peripheral T(reg) maintenance in vivo. PLoS One. 2010;5 doi: 10.1371/journal.pone.0011784. PubMed DOI PMC
Bouvy AP, Klepper M, Kho MM, Boer K, Betjes MG, Weimar W, et al. The impact of induction therapy on the homeostasis and function of regulatory T cells in kidney transplant patients. Nephrol Dial Transplant. 2014;29:1587–1597. doi: 10.1093/ndt/gfu079. PubMed DOI