Early transcriptional events linked to induction of diapause revealed by RNAseq in larvae of drosophilid fly, Chymomyza costata
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26391666
PubMed Central
PMC4578651
DOI
10.1186/s12864-015-1907-4
PII: 10.1186/s12864-015-1907-4
Knihovny.cz E-zdroje
- MeSH
- Drosophilidae embryologie genetika MeSH
- genetická transkripce * MeSH
- larva genetika MeSH
- reprodukovatelnost výsledků MeSH
- sekvenční analýza RNA MeSH
- shluková analýza MeSH
- stanovení celkové genové exprese MeSH
- transkriptom MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Diapause is a developmental alternative to direct ontogeny in many invertebrates. Its primary adaptive meaning is to secure survival over unfavourable seasons in a state of developmental arrest usually accompanied by metabolic suppression and enhanced tolerance to environmental stressors. During photoperiodically triggered diapause of insects, the ontogeny is centrally turned off under hormonal control, the molecular details of this transition being poorly understood. Using RNAseq technology, we characterized transcription profiles associated with photoperiodic diapause induction in the larvae of the drosophilid fly Chymomyza costata with the goal of identifying candidate genes and processes linked to upstream regulatory events that eventually lead to a complex phenotypic change. RESULTS: Short day photoperiod triggering diapause was associated to inhibition of 20-hydroxy ecdysone (20-HE) signalling during the photoperiod-sensitive stage of C. costata larval development. The mRNA levels of several key genes involved in 20-HE biosynthesis, perception, and signalling were significantly downregulated under short days. Hormonal change was translated into downregulation of a series of other transcripts with broad influence on gene expression, protein translation, alternative histone marking by methylation and alternative splicing. These changes probably resulted in blockade of direct development and deep restructuring of metabolic pathways indicated by differential expression of genes involved in cell cycle regulation, metabolism, detoxification, redox balance, protection against oxidative stress, cuticle formation and synthesis of larval storage proteins. This highly complex alteration of gene transcription was expressed already during first extended night, within the first four hours after the change of the photoperiodic signal from long days to short days. We validated our RNAseq differential gene expression results in an independent qRT-PCR experiment involving wild-type (photoperiodic) and NPD-mutant (non-photoperiodic) strains of C. costata. CONCLUSIONS: Our study revealed several strong candidate genes for follow-up functional studies. Candidate genes code for upstream regulators of a complex change of gene expression, which leads to phenotypic switch from direct ontogeny to larval diapause.
Biology Centre CAS Institute of Entomology Branišovská 31 37005 České Budějovice Czech Republic
Faculty of Science University of South Bohemia Branišovská 31 37005 České Budějovice Czech Republic
Zobrazit více v PubMed
Denlinger DL. Regulation of diapause. Annu Rev Entomol. 2002;47:93–122. doi: 10.1146/annurev.ento.47.091201.145137. PubMed DOI
MacRae TH. Gene expression, metabolic regulation and stress tolerance during diapause. Cell Mol Life Sci. 2010;67(14):2405–2424. doi: 10.1007/s00018-010-0311-0. PubMed DOI PMC
Denlinger DL. Why study diapause? Entomological Research. 2008;38(1):1–9. doi: 10.1111/j.1748-5967.2008.00139.x. DOI
Danks HV. Insect dormancy: An ecological perspective. Biological survey of Canada (Terrestrial Arthropods): Monograph Series; 1987.
Lees AD. The physiology of diapause in arthropods. Cambridge; 1955.
Kostal V. Eco-physiological phases of insect diapause. J Insect Physiol. 2006;52(2):113–127. doi: 10.1016/j.jinsphys.2005.09.008. PubMed DOI
Kostal V, Simunkova P, Kobelkova A, Shimada K. Cell cycle arrest as a hallmark of insect diapause: Changes in gene transcription during diapause induction in the drosophilid fly, Chymomyza costata. Insect Biochem Molec. 2009;39(12):875–883. doi: 10.1016/j.ibmb.2009.10.004. PubMed DOI
Tauber MJ, Tauber CA, Masaki S. Seasonal adaptations of insects. Oxford; 1986.
Hahn DA, Denlinger DL. Meeting the energetic demands of insect diapause: nutrient storage and utilization. J Insect Physiol. 2007;53(8):760–773. doi: 10.1016/j.jinsphys.2007.03.018. PubMed DOI
Hahn DA, Denlinger DL. Energetics of insect diapause. Annu Rev Entomol. 2011;56:103–121. doi: 10.1146/annurev-ento-112408-085436. PubMed DOI
Tatar M, Yin CM. Slow aging during insect reproductive diapause: why butterflies, grasshoppers and flies are like worms. Exp Gerontol. 2001;36(4–6):723–738. doi: 10.1016/S0531-5565(00)00238-2. PubMed DOI
Blagojevic DP. Antioxidant systems in supporting environmental and programmed adaptations to low temperatures. Cryoletters. 2007;28(3):137–150. PubMed
Denlinger D. Relationship between cold hardiness and diapause. In: Lee R Jr, Denlinger D, editors. Insects at Low Temperature. US: Springer; 1991. pp. 174–198.
Ragland GJ, Denlinger DL, Hahn DA. Mechanisms of suspended animation are revealed by transcript profiling of diapause in the flesh fly. Proc Natl Acad Sci U S A. 2010;107(33):14909–14914. doi: 10.1073/pnas.1007075107. PubMed DOI PMC
Williams KD, Schmidt PS, Sokolowski MB. Photoperiodism in insects: molecular basis and consequences of diapause. In: Nelson RJ, Denlinger DL, Somers DE, editors. Photoperiodism. New York: Oxford University Press; 2010. pp. 287–317.
Saunders DS, Henrich VC, Gilbert LI. Induction of diapause in Drosophila melanogaster - Photoperiodic regulation and the impact of arrhythmic clock mutations on time measurement. Proc Natl Acad Sci U S A. 1989;86(10):3748–3752. doi: 10.1073/pnas.86.10.3748. PubMed DOI PMC
de Wilde J, de Boer JA. Physiology of diapause in the adult Colorado potato beetle. II. Diapause as a case of pseudoallatectomy. J Insect Physiol. 1961;6:152–161. doi: 10.1016/0022-1910(61)90037-3. DOI
Denlinger DL, Yocum GD, Rinehart JP. Hormonal control of diapause. In: Gilbert LI, editor. Insect Endocrinology. Amsterdam: Elsevier; 2012. pp. 430–463.
Williams CM. Physiology of insect diapause - the role of the brain in the production and termination of pupal dormancy in the giant silkworm, Platysamia cecropia. Biol Bull. 1946;90(3):234–243. doi: 10.2307/1538121. PubMed DOI
Shimokawa K, Numata H, Shiga S. Neurons important for the photoperiodic control of diapause in the bean bug, Riptortus pedestris. J Comp Physiol A. 2008;194(8):751–762. doi: 10.1007/s00359-008-0346-y. PubMed DOI
Vafopoulou X, Steel CGH, Terry KL. Neuroanatomical relations of prothoracicotropic hormone neurons with the circadian timekeeping system in the brain of larval and adult Rhodnius prolixus (Hemiptera) J Comp Neurol. 2007;503(4):511–524. doi: 10.1002/cne.21393. PubMed DOI
Goto S, Shiga S, Numata H. Photoperiodism in insects: perception of light and the role of clock neurons. In: Nelson RJ, Denlinger DL, Somers DE, editors. Photoperiodism. New York: Oxford University Press; 2010. pp. 258–286.
Kostal V. Insect photoperiodic calendar and circadian clock: Independence, cooperation, or unity? J Insect Physiol. 2011;57(5):538–556. doi: 10.1016/j.jinsphys.2010.10.006. PubMed DOI
Saunders DS. Insect photoperiodism: seeing the light. Physiol Entomol. 2012;37(3):207–218. doi: 10.1111/j.1365-3032.2012.00837.x. DOI
Sim C, Denlinger DL. Insulin signaling and FOXO regulate the overwintering diapause of the mosquito Culex pipiens. Proc Natl Acad Sci U S A. 2008;105(18):6777–6781. doi: 10.1073/pnas.0802067105. PubMed DOI PMC
Sim C, Kang DS, Kim S, Bai XD, Denlinger DL. Identification of FOXO targets that generate diverse features of the diapause phenotype in the mosquito Culex pipiens. Proc Natl Acad Sci U S A. 2015;112(12):3811–3816. PubMed PMC
Williams KD, Busto M, Suster ML, So AKC, Ben-Shahar Y, Leevers SJ, et al. Natural variation in Drosophila melanogaster diapause due to the insulin-regulated PI3-kinase. Proc Natl Acad Sci U S A. 2006;103(43):15911–15915. doi: 10.1073/pnas.0604592103. PubMed DOI PMC
Hayward SAL. Application of functional ‘Omics’ in environmental stress physiology: insights, limitations, and future challenges. Current Opinion in Insect Science. 2014;4:35–41. doi: 10.1016/j.cois.2014.08.005. PubMed DOI
Bryon A, Wybouw N, Dermauw W, Tirry L, Van Leeuwen T. Genome wide gene expression analysis of facultative reproductive diapause in the two-spotted spider mite Tetranychus urticae. BMC Genomics. 2013;14:815. doi: 10.1186/1471-2164-14-815. PubMed DOI PMC
Daibo S, Kimura MT, Goto SG. Upregulation of genes belonging to the drosomycin family in diapausing adults of Drosophila triauraria. Gene. 2001;278(1–2):177–184. doi: 10.1016/S0378-1119(01)00713-2. PubMed DOI
Denlinger DL, Joplin KH, Flannagan RD, Tammariello SP, Zhang ML, Yocum GD, Lee KY. Diapause-specific gene expression. In: Molecular Mechanisms of Insect Metamorphosis and Diapause. Edited by Consulting IP. Tokyo; 1995: 289–297.
Flannagan RD, Tammariello SP, Joplin KH, Cikra-Ireland RA, Yocum GD, Denlinger DL. Diapause specific gene expression in pupae of the flesh fly Sarcophaga crassipalpis. Proc Natl Acad Sci U S A. 1998;95(10):5616–5620. doi: 10.1073/pnas.95.10.5616. PubMed DOI PMC
Kankare M, Salminen T, Laiho A, Vesala L, Hoikkala A. Changes in gene expression linked with adult reproductive diapause in a northern malt fly species: a candidate gene microarray study. BMC Ecol. 2010;10:3. doi: 10.1186/1472-6785-10-3. PubMed DOI PMC
Rinehart JP, Robich RM, Denlinger DL. Isolation of diapause-regulated genes from the flesh fly, Sarcophaga crassipalpis by suppressive subtractive hybridization. J Insect Physiol. 2010;56(6):603–609. doi: 10.1016/j.jinsphys.2009.12.007. PubMed DOI
Robich RM, Denlinger DL. Diapause in the mosquito Culex pipiens evokes a metabolic switch from blood feeding to sugar gluttony. Proc Natl Acad Sci U S A. 2005;102(44):15912–15917. doi: 10.1073/pnas.0507958102. PubMed DOI PMC
Robich RM, Rinehart JP, Kitchen LJ, Denlinger DL. Diapause specific gene expression in the northern house mosquito, Culex pipiens L., identified by suppressive subtractive hybridization. J Insect Physiol. 2007;53(3):235–45. doi: 10.1016/j.jinsphys.2006.08.008. PubMed DOI PMC
Sim C, Denlinger DL. Transcription profiling and regulation of fat metabolism genes in diapausing adults of the mosquito Culex pipiens. Physiol Genomics. 2009;39(3):202–209. doi: 10.1152/physiolgenomics.00095.2009. PubMed DOI PMC
Uryu M, Ninomiya Y, Yokoi T, Tsuzuki S, Hayakawa Y. Enhanced expression of genes in the brains of larvae of Mamestra brassicae (Lepidoptera : Noctuidae) exposed to short daylength or fed Dopa. Eur J Entomol. 2003;100(2):245–250. doi: 10.14411/eje.2003.039. DOI
Yocum GD. Isolation and characterization of three diapause associated transcripts from the Colorado potato beetle, Leptinotarsa decemlineata. J Insect Physiol. 2003;49(2):161–169. doi: 10.1016/S0022-1910(02)00262-7. PubMed DOI
Baker DA, Russell S. Gene expression during Drosophila melanogaster egg development before and after reproductive diapause. BMC Genomics. 2009;10:242. doi: 10.1186/1471-2164-10-242. PubMed DOI PMC
Emerson KJ, Bradshaw WE, Holzapfel CM. Microarrays reveal early transcriptional events during the termination of larval diapause in natural populations of the mosquito, Wyeomyia smithii. Plos One. 2010;5(3):e9574. doi: 10.1371/journal.pone.0009574. PubMed DOI PMC
Ragland GJ, Egan SP, Feder JL, Berlocher SH, Hahn DA. Developmental trajectories of gene expression reveal candidates for diapause termination: a key life-history transition in the apple maggot fly Rhagoletis pomonella. J Exp Biol. 2011;214(23):3948–3959. doi: 10.1242/jeb.061085. PubMed DOI
Yocum GD, Rinehart JP, Horvath DP, Kemp WP, Bosch J, Alroobi R, et al. Key molecular processes of the diapause to post-diapause quiescence transition in the alfalfa leaf cutting bee Megachile rotundata identified by comparative transcriptome analysis. Physiol Entomol. 2015;40(2):103–112. doi: 10.1111/phen.12093. DOI
Bao B, Xu WH. Identification of gene expression changes associated with the initiation of diapause in the brain of the cotton bollworm, Helicoverpa armigera. BMC Genomics. 2011;12:224. doi: 10.1186/1471-2164-12-224. PubMed DOI PMC
Poelchau MF, Reynolds JA, Elsik CG, Denlinger DL, Armbruster PA. RNA-Seq reveals early distinctions and late convergence of gene expression between diapause and quiescence in the Asian tiger mosquito, Aedes albopictus. J Exp Biol. 2013;216(21):4082–4090. doi: 10.1242/jeb.089508. PubMed DOI PMC
Poelchau MF, Reynolds JA, Elsik CG, Denlinger DL, Armbruster PA. Deep sequencing reveals complex mechanisms of diapause preparation in the invasive mosquito, Aedes albopictus. Proc Roy Soc B-Biol Sci. 2013;280(1759):20130143. doi: 10.1098/rspb.2013.0143. PubMed DOI PMC
Reynolds JA, Hand SC. Embryonic diapause highlighted by differential expression of mRNAs for ecdysteroidogenesis, transcription and lipid sparing in the cricket Allonemobius socius. J Exp Biol. 2009;212(13):2074–2083. PubMed PMC
Urbanski JM, Aruda A, Armbruster P. A transcriptional element of the diapause program in the Asian tiger mosquito, Aedes albopictus, identified by suppressive subtractive hybridization. J Insect Physiol. 2010;56(9):1147–1154. doi: 10.1016/j.jinsphys.2010.03.008. PubMed DOI
Yocum GD, Rinehart JP, Chirumamilla-Chapara A, Larson ML. Characterization of gene expression patterns during the initiation and maintenance phases of diapause in the Colorado potato beetle, Leptinotarsa decemlineata. J Insect Physiol. 2009;55(1):32–39. doi: 10.1016/j.jinsphys.2008.10.003. PubMed DOI
Le Trionnaire G, Francis F, Jaubert-Possamai S, Bonhomme J, De Pauw E, Gauthier JP, et al. Transcriptomic and proteomic analyses of seasonal photoperiodism in the pea aphid. BMC Genomics. 2009;10:456. doi: 10.1186/1471-2164-10-456. PubMed DOI PMC
Huang X, Poelchau MF, Armbruster PA. Global transcriptional dynamics of diapause induction in non-blood-fed and blood-fed Aedes albopictus. PLoS Negl Trop Dis. 2015;9(4):e0003724. doi: 10.1371/journal.pntd.0003724. PubMed DOI PMC
Reynolds JA, Clark J, Diakoff SJ, Denlinger DL. Transcriptional evidence for small RNA regulation of pupal diapause in the flesh fly, Sarcophaga bullata. Insect Biochem Mol Biol. 2013;43(10):982–989. doi: 10.1016/j.ibmb.2013.07.005. PubMed DOI
Kost’al V, Noguchi H, Shimada K, Hayakawa Y. Circadian component influences the photoperiodic induction of diapause in a drosophilid fly, Chymomyza costata. J Insect Physiol. 2000;46(6):887–896. doi: 10.1016/S0022-1910(99)00195-X. PubMed DOI
Kostal V, Shimada K, Hayakawa Y. Induction and development of winter larval diapause in a drosophilid fly, Chymomyza costata. J Insect Physiol. 2000;46(4):417–428. doi: 10.1016/S0022-1910(99)00124-9. PubMed DOI
Bryant PJ, Simpson P. Intrinsic and extrinsic control of growth in developing organs. Q Rev Biol. 1984;59(4):387–415. doi: 10.1086/414040. PubMed DOI
Edgar BA, Lehner CF. Developmental control of cell cycle regulators: A fly’s perspective. Science. 1996;274(5293):1646–1652. doi: 10.1126/science.274.5293.1646. PubMed DOI
Held LIJ. Imaginal discs. Cambridge; 2002
Riihimaa AJ, Kimura MT. A mutant strain of Chymomyza costata (Diptera, Drosophilidae) insensitive to diapause inducing action of photoperiod. Physiol Entomol. 1988;13(4):441–445. doi: 10.1111/j.1365-3032.1988.tb01128.x. DOI
Stehlik J, Zavodska R, Shimada K, Sauman I, Kostal V. Photoperiodic induction of diapause requires regulated transcription of timeless in the larval brain of Chymomyza costata. J Biol Rhythms. 2008;23(2):129–139. doi: 10.1177/0748730407313364. PubMed DOI
Lane ME, Sauer K, Wallace K, Jan YN, Lehner CF, Vaessin H. Dacapo, a cyclin-dependent kinase inhibitor, stops cell proliferation during Drosophila development. Cell. 1996;87(7):1225–1235. doi: 10.1016/S0092-8674(00)81818-8. PubMed DOI
Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13(12):1501–1512. doi: 10.1101/gad.13.12.1501. PubMed DOI
Morgan DO. The cell cycle. Oxford; 2007
Attwooll C, Lazzerini Denchi E, Helin K. The E2F family: specific functions and overlapping interests. EMBO J. 2004;23(24):4709–4716. doi: 10.1038/sj.emboj.7600481. PubMed DOI PMC
Sha W, Moore J, Chen K, Lassaletta AD, Yi CS, Tyson JJ, et al. Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts. Proc Natl Acad Sci U S A. 2003;100(3):975–980. doi: 10.1073/pnas.0235349100. PubMed DOI PMC
Devault A, Martinez AM, Fesquet D, Labbe JC, Morin N, Tassan JP, et al. MAT1 (‘menage a trois’) a new RING finger protein subunit stabilizing cyclin H-cdk7 complexes in starfish and Xenopus CAK. EMBO J. 1995;14(20):5027–5036. PubMed PMC
Emery IF, Bedian V, Guild GM. Differential expression of broad complex transcription factors may forecast tissue-specific developmental fates during Drosophila metamorphosis. Development. 1994;120(11):3275–3287. PubMed
Nakagaki M, Takei R, Nagashima E, Yaginuma T. Cell cycles in embryos of the silkworm, Bombyx mori: G2-arrest at diapause stage. Roux’s Arch Dev Biol. 1991;200(4):223–229. doi: 10.1007/BF00361341. PubMed DOI
Tammariello SP, Denlinger DL. G0/G1 cell cycle arrest in the brain of Sarcophaga crassipalpis during pupal diapause and the expression pattern of the cell cycle regulator, proliferating cell nuclear antigen. Insect Biochem Molec. 1998;28(2):83–89. doi: 10.1016/S0965-1748(97)00082-9. PubMed DOI
Siaussat D, Bozzolan F, Porcheron P, Debernard S. The 20-hydroxyecdysone-induced signalling pathway in G2/M arrest of Plodia interpunctella imaginal wing cells. Insect Biochem Molec. 2008;38(5):529–539. doi: 10.1016/j.ibmb.2008.01.001. PubMed DOI
Siaussat D, Bozzolan F, Queguiner I, Porcheron P, Debernard S. Cell cycle profiles of EcR, USP, HR3 and B cyclin mRNAs associated to 20HE-induced G2 arrest of Plodia interpunctella imaginal wing cells. Insect Mol Biol. 2005;14:151–161. doi: 10.1111/j.1365-2583.2004.00540.x. PubMed DOI
Gilbert LI, Rybczynski R, Warren JT. Control and biochemical nature of the ecdysteroidogenic pathway. Annu Rev Entomol. 2002;47:883–916. doi: 10.1146/annurev.ento.47.091201.145302. PubMed DOI
Denlinger DL. Molecular regulation of insect diapause. In: Storey KB, Storey J, editors. Environmental stressors and Gene Responses. Amsterdam: Elsevier; 2000. pp. 259–275.
Yamanaka N, Rewitz KF, O’Connor MB. Ecdysone control of developmental transitions: lessons from Drosophila research. Annu Rev Entomol. 2013;58:497–516. doi: 10.1146/annurev-ento-120811-153608. PubMed DOI PMC
Riddiford LM. Hormones and Drosophila development. In: Development of Drosophila melanogaster. Edited by Bate M, Martinez Arias A: Cold Spring Harbor laboratory press; 1993: 899–939.
Berreur P, Porcheron P, Berreurbonnenfant J, Simpson P. Ecdysteroid levels and pupariation in Drosophila melanogaster. J Exp Zool. 1979;210(2):347–352. doi: 10.1002/jez.1402100218. DOI
Schwartz MB, Imberski RB, Kelly TJ. Analysis of metamorphosis in Drosophila melanogaster - Characterization of giant, an ecdysteroid deficient mutant. Dev Biol. 1984;103(1):85–95. doi: 10.1016/0012-1606(84)90010-1. PubMed DOI
Chihara CJ, Fristrom JW. Effects and interactions of juvenile hormone and beta-ecdysone on Drosophila imaginal discs cultured in vitro. Dev Biol. 1973;35(1):36–46. doi: 10.1016/0012-1606(73)90005-5. PubMed DOI
Doctor JS, Fristrom JW. Macromolecular changes in imaginal discs during postembryonic development. In: Kerkut GA, Gilbert LI, editors. Comprehensive Insect Physiology, Biochemistry and Pharmacology. Oxford: Pergamon Press; 1985. pp. 201–238.
Niwa R, Namiki T, Ito K, Shimada-Niwa Y, Kiuchi M, Kawaoka S, et al. Non-molting glossy/shroud encodes a short-chain dehydrogenase/reductase that functions in the ‘Black Box’ of the ecdysteroid biosynthesis pathway. Development. 2010;137(12):1991–1999. doi: 10.1242/dev.045641. PubMed DOI
Pondeville E, David JP, Guittard E, Maria A, Jacques JC, Ranson H, et al. Microarray and RNAi analysis of P450s in Anopheles gambiae male and female steroidogenic tissues: CYP307A1 is required for ecdysteroid synthesis. Plos One. 2013;8(12):e79861. doi: 10.1371/journal.pone.0079861. PubMed DOI PMC
Petryk A, Warren JT, Marques G, Jarcho MP, Gilbert LI, Kahler J, et al. Shade is the Drosophila P450 enzyme that mediates the hydroxylation of ecdysone to the steroid insect molting hormone 20-hydroxyecdysone. Proc Natl Acad Sci U S A. 2003;100(24):13773–13778. doi: 10.1073/pnas.2336088100. PubMed DOI PMC
Warren JT, Petryk A, Marques G, Parvy JP, Shinoda T, Itoyama K, et al. Phantom encodes the 25-hydroxylase of Drosophila melanogaster and Bombyx mori: a P450 enzyme critical in ecdysone biosynthesis. Insect Biochem Molec. 2004;34(9):991–1010. doi: 10.1016/j.ibmb.2004.06.009. PubMed DOI
Yoshiyama T, Namiki T, Mita K, Kataoka H, Niwa R. Neverland is an evolutionally conserved Rieske-domain protein that is essential for ecdysone synthesis and insect growth. Development. 2006;133(13):2565–2574. doi: 10.1242/dev.02428. PubMed DOI
Namiki T, Niwa R, Sakudoh T, Shirai K, Takeuchi H, Kataoka H. Cytochrome P450 CYP307A1/Spook: a regulator for ecdysone synthesis in insects. Biochem Biophys Res Commun. 2005;337(1):367–374. doi: 10.1016/j.bbrc.2005.09.043. PubMed DOI
Ono H, Rewitz KF, Shinoda T, Itoyama K, Petryk A, Rybczynski R, et al. Spook and Spookier code for stage-specific components of the ecdysone biosynthetic pathway in Diptera. Dev Biol. 2006;298(2):555–570. doi: 10.1016/j.ydbio.2006.07.023. PubMed DOI
Sztal T, Chung H, Gramzow L, Daborn PJ, Batterham P, Robin C. Two independent duplications forming the Cyp307a genes in Drosophila. Insect Biochem Molec. 2007;37(10):1044–1053. doi: 10.1016/j.ibmb.2007.05.017. PubMed DOI
Rinehart JP, Cikra-Ireland RA, Flannagan RD, Denlinger DL. Expression of ecdysone receptor is unaffected by pupal diapause in the flesh fly, Sarcophaga crassipalpis, while its dimerization partner, USP, is downregulated. J Insect Physiol. 2001;47(8):915–921. doi: 10.1016/S0022-1910(01)00064-6. DOI
Fujiwara H, Jindra M, Newitt R, Palli SR, Hiruma K, Riddiford LM. Cloning of an ecdysone receptor homolog from Manduca sexta and the developmental profile of its mRNA in wings. Insect Biochem Mol Biol. 1995;25(7):845–856. doi: 10.1016/0965-1748(95)00023-O. PubMed DOI
Hill RJ, Billas IM, Bonneton F, Graham LD, Lawrence MC. Ecdysone receptors: from the Ashburner model to structural biology. Annu Rev Entomol. 2013;58:251–271. doi: 10.1146/annurev-ento-120811-153610. PubMed DOI
Thummel CS. Molecular mechanisms of developmental timing in C. elegans and Drosophila. Dev Cell. 2001;1(4):453–465. doi: 10.1016/S1534-5807(01)00060-0. PubMed DOI
Burtis KC, Thummel CS, Jones CW, Karim FD, Hogness DS. The Drosophila 74EF early puff contains E74, a complex ecdysone inducible gene that encodes two ets related proteins. Cell. 1990;61(1):85–99. doi: 10.1016/0092-8674(90)90217-3. PubMed DOI
Karim FD, Guild GM, Thummel CS. The Drosophila Broad complex plays a key role in controlling ecdysone-regulated gene expression at the onset of metamorphosis. Development. 1993;118(3):977–988. PubMed
Andres AJ, Fletcher JC, Karim FD, Thummel CS. Molecular analysis of the initiation of insect metamorphosis: a comparative study of Drosophila ecdysteroid-regulated transcription. Dev Biol. 1993;160(2):388–404. doi: 10.1006/dbio.1993.1315. PubMed DOI
Lepesant JA, Levine M, Garen A, Lepesant-Kejzlarvoa J, Rat L, Somme-Martin G. Developmentally regulated gene expression in Drosophila larval fat bodies. J Mol Appl Genet. 1982;1(5):371–383. PubMed
Cho YW, Hong T, Hong S, Guo H, Yu H, Kim D, et al. PTIP associates with MLL3-and MLL4-containing histone H3 lysine 4 methyltransferase complex. J Biol Chem. 2007;282(28):20395–20406. doi: 10.1074/jbc.M701574200. PubMed DOI PMC
Dehe PM, Dichtl B, Schaft D, Roguev A, Pamblanco M, Lebrun R, et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. J Biol Chem. 2006;281(46):35404–35412. doi: 10.1074/jbc.M603099200. PubMed DOI
Hsu DR, Meyer BJ. The Dpy-30 gene encodes an essential component of the Caenorhabditis elegans dosage compensation machinery. Genetics. 1994;137(4):999–1018. PubMed PMC
Jiang H, Shukla A, Wang XL, Chen WY, Bernstein BE, Roeder RG. Role for Dpy-30 in ES cell-fate specification by regulation of H3K4 methylation within bivalent domains. Cell. 2011;144(4):513–525. doi: 10.1016/j.cell.2011.01.020. PubMed DOI PMC
Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705. doi: 10.1016/j.cell.2007.02.005. PubMed DOI
Simboeck E, Gutierrez A, Cozzuto L, Beringer M, Caizzi L, Keyes WM, et al. DPY30 regulates pathways in cellular senescence through ID protein expression. Embo Journal. 2013;32(16):2217–2230. doi: 10.1038/emboj.2013.159. PubMed DOI PMC
Hernandez G, Vazquez-Pianzola P. Functional diversity of the eukaryotic translation initiation factors belonging to eIF4 families. Mech Develop. 2005;122(7–8):865–876. doi: 10.1016/j.mod.2005.04.002. PubMed DOI
George H, Terracol R. The vrille gene of Drosophila is a maternal enhancer of decapentaplegic and encodes a new member of the bZIP family of transcription factors. Genetics. 1997;146(4):1345–1363. PubMed PMC
Szuplewski S, Kottler B, Terracol R. The Drosophila bZIP transcription factor Vrille is involved in hair and cell growth. Development. 2003;130(16):3651–3662. doi: 10.1242/dev.00588. PubMed DOI
Blau J, Young MW. Cycling vrille expression is required for a functional Drosophila clock. Cell. 1999;99(6):661–671. doi: 10.1016/S0092-8674(00)81554-8. PubMed DOI
Czech B, Malone CD, Zhou R, Stark A, Schlingeheyde C, Dus M, et al. An endogenous small interfering RNA pathway in Drosophila. Nature. 2008;453(7196):798–U797. doi: 10.1038/nature07007. PubMed DOI PMC
Sontheimer EJ, Carthew RW. Silence from within: Endogenous siRNAs and miRNAs. Cell. 2005;122(1):9–12. doi: 10.1016/j.cell.2005.06.030. PubMed DOI
Zamore PD, Haley B. Ribo-gnome: The big world of small RNAs. Science. 2005;309(5740):1519–1524. doi: 10.1126/science.1111444. PubMed DOI
Taliaferro JM, Aspden JL, Bradley T, Marwha D, Blanchette M, Rio DC. Two new and distinct roles for Drosophila Argonaute-2 in the nucleus: alternative pre-mRNA splicing and transcriptional repression. Gene Dev. 2013;27(4):378–389. doi: 10.1101/gad.210708.112. PubMed DOI PMC
Frank CL. Adaptations for hibernation in the depot fats of a ground squirrel (Spermophilus beldingi) Can J Zool. 1991;69(11):2707–2711. doi: 10.1139/z91-382. DOI
Joanisse DR, Storey KB. Fatty acid content and enzymes of fatty acid metabolism in overwintering cold-hardy gall insects. Physiol Zool. 1996;69(5):1079–1095. doi: 10.1086/physzool.69.5.30164247. DOI
Rozsypal J, Kostal V, Berkova P, Zahradnickova H, Simek P. Seasonal changes in the composition of storage and membrane lipids in overwintering larvae of the codling moth, Cydia pomonella. J Therm Biol. 2014;45:124–133. doi: 10.1016/j.jtherbio.2014.08.011. PubMed DOI
Kostal V, Zahradnickova H, Simek P. Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen. Proc Natl Acad Sci U S A. 2011;108(32):13041–13046. doi: 10.1073/pnas.1107060108. PubMed DOI PMC
Isin EM, Guengerich FP. Complex reactions catalyzed by cytochrome P450 enzymes. Bba-Gen Subjects. 2007;1770(3):314–329. doi: 10.1016/j.bbagen.2006.07.003. PubMed DOI
Tijet N, Helvig C, Feyereisen R. The cytochrome P450 gene superfamily in Drosophila melanogaster: Annotation, intron-exon organization and phylogeny. Gene. 2001;262(1–2):189–198. doi: 10.1016/S0378-1119(00)00533-3. PubMed DOI
Chung H, Sztal T, Pasricha S, Sridhar M, Batterham P, Daborn PJ. Characterization of Drosophila melanogaster cytochrome P450 genes. Proc Natl Acad Sci U S A. 2009;106(14):5731–5736. doi: 10.1073/pnas.0812141106. PubMed DOI PMC
Betteridge DJ. What is oxidative stress? Metabolism. 2000;49(2 Suppl 1):3–8. doi: 10.1016/S0026-0495(00)80077-3. PubMed DOI
Johnson AE, van Waes MA. The translocon: A dynamic gateway at the ER membrane. Annu Rev Cell Dev Biol. 1999;15:799–842. doi: 10.1146/annurev.cellbio.15.1.799. PubMed DOI
Wilkinson BM, Critchley AJ, Stirling CJ. Determination of the transmembrane topology of yeast Sec61p, an essential component of the endoplasmic reticulum translocation complex. J Biol Chem. 1996;271(41):25590–25597. doi: 10.1074/jbc.271.41.25590. PubMed DOI
Nagasawa K, Higashi T, Hosokawa N, Kaufman RJ, Nagata K. Simultaneous induction of the four subunits of the TRAP complex by ER stress accelerates ER degradation. Embo Rep. 2007;8(5):483–489. doi: 10.1038/sj.embor.7400933. PubMed DOI PMC
Frickel EM, Riek R, Jelesarov I, Helenius A, Wuthrich K, Ellgaard L. TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. Proc Natl Acad Sci U S A. 2002;99(4):1954–1959. doi: 10.1073/pnas.042699099. PubMed DOI PMC
Plemper RK, Bohmler S, Bordallo J, Sommer T, Wolf DH. Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature. 1997;388(6645):891–895. doi: 10.1038/42276. PubMed DOI
Schroder M. Engineering eukaryotic protein factories. Biotechnol Lett. 2008;30(2):187–196. doi: 10.1007/s10529-007-9524-1. PubMed DOI PMC
Hampton RY, Sommer T. Finding the will and the way of ERAD substrate retrotranslocation. Curr Opin Cell Biol. 2012;24(4):460–466. doi: 10.1016/j.ceb.2012.05.010. PubMed DOI
Romisch K. Surfing the Sec61 channel: bidirectional protein translocation across the ER membrane. J Cell Sci. 1999;112(23):4185–4191. PubMed
Hohfeld J, Cyr DM, Patterson C. From the cradle to the grave: molecular chaperones that may choose between folding and degradation. Embo Rep. 2001;2(10):885–890. doi: 10.1093/embo-reports/kve206. PubMed DOI PMC
Lindquist S. The heat shock response. Annu Rev Biochem. 1986;55:1151–1191. doi: 10.1146/annurev.bi.55.070186.005443. PubMed DOI
King AM, MacRae TH. Insect heat shock proteins during stress and diapause. Annu Rev Entomol. 2015;60:59–75. doi: 10.1146/annurev-ento-011613-162107. PubMed DOI
Li AQ, Popova-Butler A, Dean DH, Denlinger DL. Proteomics of the flesh fly brain reveals an abundance of upregulated heat shock proteins during pupal diapause. J Insect Physiol. 2007;53(4):385–391. doi: 10.1016/j.jinsphys.2007.01.003. PubMed DOI
Rinehart JP, Yocum GD, Denlinger DL. Developmental upregulation of inducible hsp70 transcripts, but not the cognate form, during pupal diapause in the flesh fly, Sarcophaga crassipalpis. Insect Biochem Mol Biol. 2000;30(6):515–521. doi: 10.1016/S0965-1748(00)00021-7. PubMed DOI
Magkrioti CK, Spyropoulos IC, Iconomidou VA, Willis JH, Hamodrakas SJ. cuticleDB: a relational database of Arthropod cuticular proteins. BMC Bioinformatics. 2004;5:138. doi: 10.1186/1471-2105-5-138. PubMed DOI PMC
Willis JH. Structural cuticular proteins from arthropods: Annotation, nomenclature, and sequence characteristics in the genomics era. Insect Biochem Molec. 2010;40(3):189–204. doi: 10.1016/j.ibmb.2010.02.001. PubMed DOI PMC
Hopkins TL, Kramer KJ. Insect cuticle sclerotization. Annu Rev Entomol. 1992;37(1):273–302. doi: 10.1146/annurev.en.37.010192.001421. DOI
Riddiford LM, Hiruma K, Zhou XF, Nelson CA. Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster. Insect Biochem Molec. 2003;33(12):1327–1338. doi: 10.1016/j.ibmb.2003.06.001. PubMed DOI
Yao QO, Zhang DW, Tang B, Chen J, Chen J, Lu LA, et al. Identification of 20-hydroxyecdysone late response genes in the chitin biosynthesis pathway. Plos One. 2010;5(11):e14058. doi: 10.1371/journal.pone.0014058. PubMed DOI PMC
Gallot A, Rispe C, Leterme N, Gauthier JP, Jaubert-Possamai S, Tagu D. Cuticular proteins and seasonal photoperiodism in aphids. Insect Biochem Molec. 2010;40(3):235–240. doi: 10.1016/j.ibmb.2009.12.001. PubMed DOI
Le Trionnaire G, Jaubert S, Sabater-Munoz B, Benedetto A, Bonhomme J, Prunier-Leterme N, et al. Seasonal photoperiodism regulates the expression of cuticular and signalling protein genes in the pea aphid. Insect Biochem Molec. 2007;37(10):1094–1102. doi: 10.1016/j.ibmb.2007.06.008. PubMed DOI
Li AQ, Denlinger DL. Pupal cuticle protein is abundant during early adult diapause in the mosquito Culex pipiens. J Med Entomol. 2009;46(6):1382–1386. doi: 10.1603/033.046.0618. PubMed DOI
Jurenka RA, Holland D, Krafsur ES. Hydrocarbon profiles of diapausing and reproductive adult face flies (Musca autumnalis) Arch Insect Biochem. 1998;37(3):206–214. doi: 10.1002/(SICI)1520-6327(1998)37:3<206::AID-ARCH3>3.0.CO;2-Q. DOI
Kaneko J, Katagiri C. Epicuticular wax of large and small white butterflies, Pieris brassicae and P. rapae crucivora: qualitative and quantitative comparison between diapause and non-diapause pupae. Naturwissenschaften. 2004;91(7):320–323. PubMed
Yoder JA, Blomquist GJ, Denlinger DL. Hydrocarbon profiles from puparia of diapausing and non diapausing flesh flies (Sarcophaga crassipalpis) reflect quantitative rather than qualitative differences. Arch Insect Biochem. 1995;28(4):377–385. doi: 10.1002/arch.940280407. DOI
Yoder JA, Denlinger DL, Dennis MW, Kolattukudy PE. Enhancement of diapausing flesh fly puparia with additional hydrocarbons and evidence for alkane biosynthesis by a decarbonylation mechanism. Insect Biochem Molec. 1992;22(3):237–243. doi: 10.1016/0965-1748(92)90060-R. DOI
Kostal V, Noguchi H, Shimada K, Hayakawa Y. Developmental changes in dopamine levels in larvae of the fly Chymomyza costata: comparison between wild-type and mutant-nondiapause strains. J Insect Physiol. 1998;44(7–8):605–614. doi: 10.1016/S0022-1910(98)00043-2. PubMed DOI
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Xie Y, Wu G, Tang J, Luo R, Patterson J, Liu S, et al. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics. 2014;30(12):1660–1666. doi: 10.1093/bioinformatics/btu077. PubMed DOI
Fu LM, Niu BF, Zhu ZW, Wu ST, Li WZ. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28(23):3150–3152. doi: 10.1093/bioinformatics/bts565. PubMed DOI PMC
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–3676. doi: 10.1093/bioinformatics/bti610. PubMed DOI
Langdon WB. Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. Biodata Min. 2015;8:1. doi: 10.1186/s13040-014-0034-0. PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091–1093. doi: 10.1093/bioinformatics/btp101. PubMed DOI PMC
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC
Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, et al. A free, open-source system for microarray data management and analysis. Biotechniques. 2003;34(2):374. PubMed
Ponton F, Chapuis MP, Pernice M, Sword GA, Simpson SJ. Evaluation of potential reference genes for reverse transcription-qPCR studies of physiological responses in Drosophila melanogaster. J Insect Physiol. 2011;57(6):840–850. doi: 10.1016/j.jinsphys.2011.03.014. PubMed DOI
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC
Evolution of casein kinase 1 and functional analysis of new doubletime mutants in Drosophila
Transcriptional analysis of insect extreme freeze tolerance