Recent Advances in Monoclonal Antibody Therapies for Multiple Sclerosis

. 2016 Jun ; 16 (6) : 827-839. [epub] 20160310

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid26914737

Grantová podpora
R01 GM092993 NIGMS NIH HHS - United States
R01 NS048357 NINDS NIH HHS - United States
R21 NS073684 NINDS NIH HHS - United States
UL1 TR000135 NCATS NIH HHS - United States

INTRODUCTION: Multiple sclerosis (MS) is the most common chronic inflammatory, demyelinating disease of the CNS and results in neurological disability. Existing immunomodulatory and immunosuppressive approaches lower the number of relapses but do not cure or reverse existing deficits nor improve long-term disability in MS patients. AREAS COVERED: Monogenic antibodies were described as treatment options for MS, however the immunogenicity of mouse antibodies hampered the efficacy of potential therapeutics in humans. Availability of improved antibody production technologies resulted in a paradigm shift in MS treatment strategies. In this review, an overview of immunotherapies for MS that use conventional monoclonal antibodies reactive to immune system and their properties and mechanisms of action will be discussed, including recent advances in MS therapeutics and highlight natural autoantibodies (NAbs) that directly target CNS cells. EXPERT OPINION: Recent challenges for MS therapy are the identification of relevant molecular and cellular targets, time frame of treatment, and antibody toxicity profiles to identify safe treatment options for MS patients. The application of monoclonal antibody therapies with better biological efficacy associated with minimum side effects possesses huge clinical potential. Advances in monoclonal antibody technologies that directly target cells of nervous system may promote the CNS regeneration field from bench to bedside.

Zobrazit více v PubMed

Ehrlich P. Aus Theorie und Praxis der Chemotherapie. W. Klinkhardt; Leipzig: 1911.

Lonberg N. Human antibodies from transgenic animals. Nat Biotechnol. 2005 Sep;23(9):1117–25. PubMed

Rees AR. The antibody molecule : from anti-toxins to therapeutic antibodies. Oxford University Press; New York, NY: 2014.

Smith SL. Ten years of Orthoclone OKT3 (muromonab-CD3): a review. J Transpl Coord. 1996 Sep;6(3):109–19. quiz 20-1. PubMed

Rodriguez M, Karnes WE, Bartleson JD, et al. Plasmapheresis in acute episodes of fulminant CNS inflammatory demyelination. Neurology. 1993 Jun;43(6):1100–4. PubMed

Weinshenker BG, O'Brien PC, Petterson TM, et al. A randomized trial of plasma exchange in acute central nervous system inflammatory demyelinating disease. Ann Neurol. 1999 Dec;46(6):878–86. PubMed

Noseworthy JH, Lucchinetti C, Rodriguez M, et al. Multiple sclerosis. N Engl J Med. 2000 Sep 28;343(13):938–52. PubMed

Yednock TA, Cannon C, Fritz LC, et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature. 1992 Mar 5;356(6364):63–6. PubMed

Polman CH, O'Connor PW, Havrdova E, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. The New England journal of medicine. 2006 Mar 2;354(9):899–910. PubMed

Rudick RA, Stuart WH, Calabresi PA, et al. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. The New England journal of medicine. 2006 Mar 2;354(9):911–23. PubMed

Cheetham GM, Hale G, Waldmann H, et al. Crystal structures of a rat anti-CD52 (CAMPATH-1) therapeutic antibody Fab fragment and its humanized counterpart. J Mol Biol. 1998 Nov 20;284(1):85–99. PubMed

Freedman MS, Kaplan JM, Markovic-Plese S. Insights into the Mechanisms of the Therapeutic Efficacy of Alemtuzumab in Multiple Sclerosis. J Clin Cell Immunol. 2013 Jul 8;4(4) PubMed PMC

Hill-Cawthorne GA, Button T, Tuohy O, et al. Long term lymphocyte reconstitution after alemtuzumab treatment of multiple sclerosis. J Neurol Neurosurg Psychiatry. 2012 Mar;83(3):298–304. PubMed

Coles AJ, Twyman CL, Arnold DL, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet. 2012 Nov 24;380(9856):1829–39. PubMed

Esiri MM. Multiple sclerosis: a quantitative and qualitative study of immunoglobulin-containing cells in the central nervous system. Neuropathol Appl Neurobiol. 1980 Jan-Feb;6(1):9–21. PubMed

Cepok S, Jacobsen M, Schock S, et al. Patterns of cerebrospinal fluid pathology correlate with disease progression in multiple sclerosis. Brain. 2001 Nov;124(Pt 11):2169–76. PubMed

Knopf PM, Harling-Berg CJ, Cserr HF, et al. Antigen-dependent intrathecal antibody synthesis in the normal rat brain: tissue entry and local retention of antigen-specific B cells. J Immunol. 1998 Jul 15;161(2):692–701. PubMed

Corcione A, Casazza S, Ferretti E, et al. Recapitulation of B cell differentiation in the central nervous system of patients with multiple sclerosis. Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):11064–9. PubMed PMC

Li R, Rezk A, Miyazaki Y, et al. Proinflammatory GM-CSF-producing B cells in multiple sclerosis and B cell depletion therapy. Sci Transl Med. 2015 Oct 21;7(310):310ra166. PubMed

Qin Y, Duquette P, Zhang Y, et al. Clonal expansion and somatic hypermutation of V(H) genes of B cells from cerebrospinal fluid in multiple sclerosis. J Clin Invest. 1998 Sep 1;102(5):1045–50. PubMed PMC

Cross AH, Wu GF. Multiple sclerosis: oligoclonal bands still yield clues about multiple sclerosis. Nat Rev Neurol. 2010 Nov;6(11):588–9. PubMed

Amato MP, Ponziani G. A prospective study on the prognosis of multiple sclerosis. Neurol Sci. 2000;21(4 Suppl 2):S831–8. PubMed

Joseph FG, Hirst CL, Pickersgill TP, et al. CSF oligoclonal band status informs prognosis in multiple sclerosis: a case control study of 100 patients. J Neurol Neurosurg Psychiatry. 2009 Mar;80(3):292–6. PubMed

Steinman L, Zamvil SS. Virtues and pitfalls of EAE for the development of therapies for multiple sclerosis. Trends Immunol. 2005 Nov;26(11):565–71. PubMed

Booss J, Esiri MM, Tourtellotte WW, et al. Immunohistological analysis of T lymphocyte subsets in the central nervous system in chronic progressive multiple sclerosis. J Neurol Sci. 1983 Dec;62(1-3):219–32. PubMed

Monteiro J, Hingorani R, Pergolizzi R, et al. Clonal dominance of CD8+ T-cell in multiple sclerosis. Ann N Y Acad Sci. 1995 Jul 7;756:310–2. PubMed

Tzartos JS, Friese MA, Craner MJ, et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol. 2008 Jan;172(1):146–55. PubMed PMC

Bar-Or A, Fawaz L, Fan B, et al. Abnormal B-cell cytokine responses a trigger of T-cell-mediated disease in MS? Ann Neurol. 2010 Apr;67(4):452–61. PubMed

Wootla B, Denic A, Keegan BM, et al. Evidence for the role of B cells and immunoglobulins in the pathogenesis of multiple sclerosis. Neurol Res Int. 2011;2011:780712. PubMed PMC

Hauser SL, Waubant E, Arnold DL, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. The New England journal of medicine. 2008 Feb 14;358(7):676–88. PubMed

Hammer O. CD19 as an attractive target for antibody-based therapy. MAbs. 2012 Sep-Oct;4(5):571–7. PubMed PMC

Hawker K, O'Connor P, Freedman MS, et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Annals of neurology. 2009 Oct;66(4):460–71. PubMed

Gea-Banacloche JC. Rituximab-associated infections. Semin Hematol. 2010 Apr;47(2):187–98. PubMed

Dai Y, Lu T, Wang Y, et al. Rapid exacerbation of neuromyelitis optica after rituximab treatment. J Clin Neurosci. 2015 Dec 15; PubMed

Kappos L, Li D, Calabresi PA, et al. Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet. 2011 Nov 19;378(9805):1779–87. PubMed

Hutas G. Ocrelizumab, a humanized monoclonal antibody against CD20 for inflammatory disorders and B-cell malignancies. Curr Opin Investig Drugs. 2008 Nov;9(11):1206–15. PubMed

Sorensen PS, Lisby S, Grove R, et al. Safety and efficacy of ofatumumab in relapsing-remitting multiple sclerosis: a phase 2 study. Neurology. 2014 Feb 18;82(7):573–81. PubMed

Ward E, Mittereder N, Kuta E, et al. A glycoengineered anti-CD19 antibody with potent antibody-dependent cellular cytotoxicity activity in vitro and lymphoma growth inhibition in vivo. Br J Haematol. 2011 Nov;155(4):426–37. PubMed

Suresh T, Lee LX, Joshi J, et al. New antibody approaches to lymphoma therapy. J Hematol Oncol. 2014;7:58. PubMed PMC

Manetta J, Bina H, Ryan P, et al. Generation and characterization of tabalumab, a human monoclonal antibody that neutralizes both soluble and membrane-bound B-cell activating factor. J Inflamm Res. 2014;7:121–31. PubMed PMC

Saito Y, Miyagawa Y, Onda K, et al. B-cell-activating factor inhibits CD20-mediated and B-cell receptor-mediated apoptosis in human B cells. Immunology. 2008 Dec;125(4):570–90. PubMed PMC

Bielekova B, Richert N, Howard T, et al. Humanized anti-CD25 (daclizumab) inhibits disease activity in multiple sclerosis patients failing to respond to interferon beta. Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8705–8. PubMed PMC

Bielekova B, Catalfamo M, Reichert-Scrivner S, et al. Regulatory CD56(bright) natural killer cells mediate immunomodulatory effects of IL-2Ralpha-targeted therapy (daclizumab) in multiple sclerosis. Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5941–6. PubMed PMC

Kappos L, Wiendl H, Selmaj K, et al. Daclizumab HYP versus Interferon Beta-1a in Relapsing Multiple Sclerosis. N Engl J Med. 2015 Oct 8;373(15):1418–28. PubMed

Patel DD, Lee DM, Kolbinger F, et al. Effect of IL-17A blockade with secukinumab in autoimmune diseases. Ann Rheum Dis. 2013 Apr;72(Suppl 2):ii116–23. PubMed

Mardiguian S, Serres S, Ladds E, et al. Anti-IL-17A treatment reduces clinical score and VCAM-1 expression detected by in vivo magnetic resonance imaging in chronic relapsing EAE ABH mice. Am J Pathol. 2013 Jun;182(6):2071–81. PubMed PMC

Matusevicius D, Kivisakk P, He B, et al. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult Scler. 1999 Apr;5(2):101–4. PubMed

Navarro-Millan I, Singh JA, Curtis JR. Systematic review of tocilizumab for rheumatoid arthritis: a new biologic agent targeting the interleukin-6 receptor. Clin Ther. 2012 Apr;34(4):788–802. e3. PubMed PMC

Maimone D, Guazzi GC, Annunziata P. IL-6 detection in multiple sclerosis brain. J Neurol Sci. 1997 Feb 27;146(1):59–65. PubMed

Sato H, Kobayashi D, Abe A, et al. Tocilizumab treatment safety in rheumatoid arthritis in a patient with multiple sclerosis: a case report. BMC Res Notes. 2014;7:641. PubMed PMC

Beauchemin P, Carruthers R. MS arising during Tocilizumab therapy for rheumatoid arthritis. Mult Scler. 2016 Jan 7; PubMed

Steidl S, Ratsch O, Brocks B, et al. In vitro affinity maturation of human GM-CSF antibodies by targeted CDR-diversification. Molecular immunology. 2008 Nov;46(1):135–44. PubMed

Disis ML, Bernhard H, Shiota FM, et al. Granulocyte-macrophage colony-stimulating factor: an effective adjuvant for protein and peptide-based vaccines. Blood. 1996 Jul 1;88(1):202–10. PubMed

Behrens F, Tak PP, Ostergaard M, et al. MOR103, a human monoclonal antibody to granulocyte-macrophage colony-stimulating factor, in the treatment of patients with moderate rheumatoid arthritis: results of a phase Ib/IIa randomised, double-blind, placebo-controlled, dose-escalation trial. Ann Rheum Dis. 2015 Jun;74(6):1058–64. PubMed PMC

Constantinescu CS, Asher A, Fryze W, et al. Randomized phase 1b trial of MOR103, a human antibody to GM-CSF, in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2015 Aug;2(4):e117. PubMed PMC

Perron H, Geny C, Laurent A, et al. Leptomeningeal cell line from multiple sclerosis with reverse transcriptase activity and viral particles. Res Virol. 1989 Nov-Dec;140(6):551–61. PubMed

Perron H, Garson JA, Bedin F, et al. Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. The Collaborative Research Group on Multiple Sclerosis. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7583–8. PubMed PMC

Sotgiu S, Mameli G, Serra C, et al. Multiple sclerosis-associated retrovirus and progressive disability of multiple sclerosis. Mult Scler. 2010 Oct;16(10):1248–51. PubMed

Mameli G, Astone V, Arru G, et al. Brains and peripheral blood mononuclear cells of multiple sclerosis (MS) patients hyperexpress MS-associated retrovirus/HERV-W endogenous retrovirus, but not Human herpesvirus 6. J Gen Virol. 2007 Jan;88(Pt 1):264–74. PubMed

Perron H, Dougier-Reynaud HL, Lomparski C, et al. Human endogenous retrovirus protein activates innate immunity and promotes experimental allergic encephalomyelitis in mice. PLoS One. 2013;8(12):e80128. PubMed PMC

Curtin F, Perron H, Kromminga A, et al. Preclinical and early clinical development of GNbAC1, a humanized IgG4 monoclonal antibody targeting endogenous retroviral MSRV-Env protein. MAbs. 2015;7(1):265–75. PubMed PMC

Derfuss T, Curtin F, Guebelin C, et al. A phase IIa randomised clinical study of GNbAC1, a humanised monoclonal antibody against the envelope protein of multiple sclerosis-associated endogenous retrovirus in multiple sclerosis patients. Mult Scler. 2015 Jun;21(7):885–93. PubMed

Derfuss T, Curtin F, Guebelin C, et al. A phase IIa randomized clinical study testing GNbAC1, a humanized monoclonal antibody against the envelope protein of multiple sclerosis associated endogenous retrovirus in multiple sclerosis patients - a twelve month follow-up. J Neuroimmunol. 2015 Aug 15;285:68–70. PubMed

Benson JM, Peritt D, Scallon BJ, et al. Discovery and mechanism of ustekinumab: a human monoclonal antibody targeting interleukin-12 and interleukin-23 for treatment of immune-mediated disorders. MAbs. 2011 Nov-Dec;3(6):535–45. PubMed PMC

Luo J, Wu SJ, Lacy ER, et al. Structural basis for the dual recognition of IL-12 and IL-23 by ustekinumab. J Mol Biol. 2010 Oct 8;402(5):797–812. PubMed

Annunziato F, Cosmi L, Liotta F, et al. Human Th1 dichotomy: origin, phenotype and biologic activities. Immunology. 2014 Oct 5; PubMed PMC

Leonardi CL, Kimball AB, Papp KA, et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1) Lancet. 2008 May 17;371(9625):1665–74. PubMed

Sandborn WJ, Feagan BG, Fedorak RN, et al. A randomized trial of Ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn's disease. Gastroenterology. 2008 Oct;135(4):1130–41. PubMed

Kavanaugh A, Ritchlin C, Rahman P, et al. Ustekinumab, an anti-IL-12/23 p40 monoclonal antibody, inhibits radiographic progression in patients with active psoriatic arthritis: results of an integrated analysis of radiographic data from the phase 3, multicentre, randomised, double-blind, placebo-controlled PSUMMIT-1 and PSUMMIT-2 trials. Ann Rheum Dis. 2014 Jun;73(6):1000–6. PubMed PMC

Lovett-Racke AE, Yang Y, Racke MK. Th1 versus Th17: are T cell cytokines relevant in multiple sclerosis? Biochim Biophys Acta. 2011 Feb;1812(2):246–51. PubMed PMC

Leonard JP, Waldburger KE, Goldman SJ. Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12. J Exp Med. 1995 Jan 1;181(1):381–6. PubMed PMC

Brok HP, van Meurs M, Blezer E, et al. Prevention of experimental autoimmune encephalomyelitis in common marmosets using an anti-IL-12p40 monoclonal antibody. J Immunol. 2002 Dec 1;169(11):6554–63. PubMed

Nicoletti F, Patti F, Cocuzza C, et al. Elevated serum levels of interleukin-12 in chronic progressive multiple sclerosis. J Neuroimmunol. 1996 Oct;70(1):87–90. PubMed

Woodroofe MN, Cuzner ML. Cytokine mRNA expression in inflammatory multiple sclerosis lesions: detection by non-radioactive in situ hybridization. Cytokine. 1993 Nov;5(6):583–8. PubMed

Fassbender K, Ragoschke A, Rossol S, et al. Increased release of interleukin-12p40 in MS: association with intracerebral inflammation. Neurology. 1998 Sep;51(3):753–8. PubMed

t Hart BA, Brok HP, Remarque E, et al. Suppression of ongoing disease in a nonhuman primate model of multiple sclerosis by a human-anti-human IL-12p40 antibody. J Immunol. 2005 Oct 1;175(7):4761–8. PubMed

Kasper LH, Everitt D, Leist TP, et al. A phase I trial of an interleukin-12/23 monoclonal antibody in relapsing multiple sclerosis. Curr Med Res Opin. 2006 Sep;22(9):1671–8. PubMed

Segal BM, Constantinescu CS, Raychaudhuri A, et al. Repeated subcutaneous injections of IL12/23 p40 neutralising antibody, ustekinumab, in patients with relapsing-remitting multiple sclerosis: a phase II, double-blind, placebo-controlled, randomised, dose-ranging study. Lancet Neurol. 2008 Sep;7(9):796–804. PubMed

Carim-Todd L, Escarceller M, Estivill X, et al. LRRN6A/LERN1 (leucine-rich repeat neuronal protein 1), a novel gene with enriched expression in limbic system and neocortex. Eur J Neurosci. 2003 Dec;18(12):3167–82. PubMed

Mi S, Lee X, Shao Z, et al. LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nature neuroscience. 2004 Mar;7(3):221–8. PubMed

Mi S, Miller RH, Lee X, et al. LINGO-1 negatively regulates myelination by oligodendrocytes. Nature neuroscience. 2005 Jun;8(6):745–51. PubMed

Mi S, Miller RH, Tang W, et al. Promotion of central nervous system remyelination by induced differentiation of oligodendrocyte precursor cells. Ann Neurol. 2009 Mar;65(3):304–15. PubMed

Biogen. Anti-LINGO-1 Phase 2 Acute Optic Neuritis - RENEW. 2015 http://bit.ly/1PQm8I8.

Cadavid D, Edwards K, Hupperts R, et al. BIIB033, Anti-LINGO-1 Antibody, for Treatment of Relapsing Forms of Multiple Sclerosis: Baseline Data of the Phase 2 SYNERGY Trial. Poster N° - P7204 ∣ 67th AAN Annual Meeting ∣ American Academy of Neurology® April 18-25; Washington, DC, USA. 2015 April 18-25; [cited Poster N° - P7.204 ∣ 67th AAN Annual Meeting ∣ American Academy of Neurology® April 18-25, Washington, DC, USA Available from:

Annunziata P, Pluchino S, Martino T, et al. High levels of cerebrospinal fluid IgM binding to myelin basic protein are associated with early benign course in multiple sclerosis. J Neuroimmunol. 1997 Jul;77(1):128–33. PubMed

Annunziata P, Cioni C, Cantalupo L, et al. Immunosuppressive monoclonal antibody to CD64 from patients with long-term stable multiple sclerosis. J Neuroimmunol. 2013 Mar 15;256(1-2):62–70. PubMed

Coutinho A, Kazatchkine MD, Avrameas S. Natural autoantibodies. Current opinion in immunology. 1995 Dec;7(6):812–8. PubMed

Dighiero G, Lymberi P, Mazie JC, et al. Murine hybridomas secreting natural monoclonal antibodies reacting with self antigens. J Immunol. 1983 Nov;131(5):2267–72. PubMed

Haspel MV, Onodera T, Prabhakar BS, et al. Multiple organ-reactive monoclonal autoantibodies. Nature. 1983 Jul 7-13;304(5921):73–6. PubMed

Prabhakar BS, Saegusa J, Onodera T, et al. Lymphocytes capable of making monoclonal autoantibodies that react with multiple organs are a common feature of the normal B cell repertoire. J Immunol. 1984 Dec;133(6):2815–7. PubMed

Lacroix-Desmazes S, Kaveri SV, Mouthon L, et al. Self-reactive antibodies (natural autoantibodies) in healthy individuals. J Immunol Methods. 1998 Jul 1;216(1-2):117–37. PubMed

Merbl Y, Zucker-Toledano M, Quintana FJ, et al. Newborn humans manifest autoantibodies to defined self molecules detected by antigen microarray informatics. J Clin Invest. 2007 Mar;117(3):712–8. PubMed PMC

Avrameas S, Selmi C. Natural autoantibodies in the physiology and pathophysiology of the immune system. J Autoimmun. 2013 Mar;41:46–9. PubMed

Avrameas S, Ternynck T. The natural autoantibodies system: between hypotheses and facts. Molecular immunology. 1993 Aug;30(12):1133–42. PubMed

Brandlein S, Rauschert N, Rasche L, et al. The human IgM antibody SAM-6 induces tumor-specific apoptosis with oxidized low-density lipoprotein. Molecular cancer therapeutics. 2007 Jan;6(1):326–33. PubMed

Vollmers HP, Brandlein S. Natural antibodies and cancer. New biotechnology. 2009 Jun;25(5):294–8. PubMed

Bieber AJ, Warrington A, Asakura K, et al. Human antibodies accelerate the rate of remyelination following lysolecithin-induced demyelination in mice. Glia. 2002 Mar 1;37(3):241–9. PubMed

Warrington AE, Asakura K, Bieber AJ, et al. Human monoclonal antibodies reactive to oligodendrocytes promote remyelination in a model of multiple sclerosis. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6820–5. PubMed PMC

Warrington AE, Bieber AJ, Ciric B, et al. A recombinant human IgM promotes myelin repair after a single, very low dose. Journal of neuroscience research. 2007 Apr;85(5):967–76. PubMed

Mitsunaga Y, Ciric B, Van Keulen V, et al. Direct evidence that a human antibody derived from patient serum can promote myelin repair in a mouse model of chronic-progressive demyelinating disease. Faseb J. 2002 Aug;16(10):1325–7. PubMed

Pirko I, Ciric B, Gamez J, et al. A human antibody that promotes remyelination enters the CNS and decreases lesion load as detected by T2-weighted spinal cord MRI in a virus-induced murine model of MS. FASEB J. 2004 Oct;18(13):1577–9. PubMed

Ciric B, Van Keulen V, Paz Soldan M, et al. Antibody-mediated remyelination operates through mechanism independent of immunomodulation. J Neuroimmunol. 2004 Jan;146(1-2):153–61. PubMed

Howe CL, Bieber AJ, Warrington AE, et al. Antiapoptotic signaling by a remyelination-promoting human antimyelin antibody. Neurobiol Dis. 2004 Feb;15(1):120–31. PubMed

Wootla B, Denic A, Watzlawik JO, et al. Antibody-Mediated Oligodendrocyte Remyelination Promotes Axon Health in Progressive Demyelinating Disease. Mol Neurobiol. 2015 Sep 26; PubMed PMC

Watzlawik J, Holicky E, Edberg DD, et al. Human remyelination promoting antibody inhibits apoptotic signaling and differentiation through Lyn kinase in primary rat oligodendrocytes. Glia. 2010 Nov 15;58(15):1782–93. PubMed PMC

Watzlawik JO, Warrington AE, Rodriguez M. PDGF is Required for Remyelination-Promoting IgM Stimulation of Oligodendrocyte Progenitor Cell Proliferation. PLoS One. 2013;8(2):e55149. PubMed PMC

Acorda Therapeutics Inc An Intravenous Infusion Study of rHIgM22 in Patients With Multiple Sclerosis. Clinical Trials Identifier - NCT01803867. 2015 Weblink - http://1.usa.gov/1N2gsHJ.

Greenberg BM, Rodriguez M, Kantarci OH, et al. Safety and Tolerability of the Remyelinating Therapeutic Antibody rHIgM22 in Patients with Stable Multiple Sclerosis. Poster N° - P4339 ∣ ACO P5130, 67th AAN Annual Meeting ∣ American Academy of Neurology® April 18-25; Washington, DC, USA. 2015 April 18-25; [cited Poster N° - P4.339 ∣ ACO P5130, 67th AAN Annual Meeting ∣ American Academy of Neurology® April 18-25, Washington, DC, USA Available from:

Warrington AE, Bieber AJ, Van Keulen V, et al. Neuron-binding human monoclonal antibodies support central nervous system neurite extension. J Neuropathol Exp Neurol. 2004 May;63(5):461–73. PubMed

Van Keulen VP, Ciric B, Radhakrishnan S, et al. Immunomodulation using the recombinant monoclonal human B7-DC cross-linking antibody rHIgM12. Clin Exp Immunol. 2006 Feb;143(2):314–21. PubMed PMC

Xu X, Warrington AE, Wright BR, et al. A human IgM signals axon outgrowth: coupling lipid raft to microtubules. Journal of neurochemistry. 2011 Oct;119(1):100–12. PubMed PMC

Denic A, Macura SI, Warrington AE, et al. A single dose of neuron-binding human monoclonal antibody improves spontaneous activity in a murine model of demyelination. PLoS One. 2011;6(10):e26001. PubMed PMC

Wootla B, Denic A, Watzlawik JO, et al. A single dose of a neuron-binding human monoclonal antibody improves brainstem NAA concentrations, a biomarker for density of spinal cord axons, in a model of progressive multiple sclerosis. J Neuroinflammation. 2015;12:83. PubMed PMC

Xu X, Denic A, Jordan LR, et al. A natural human IgM that binds to gangliosides is therapeutic in murine models of amyotrophic lateral sclerosis. Dis Model Mech. 2015 Aug 1;8(8):831–42. PubMed PMC

Watzlawik JO, Kahoud RJ, Ng S, et al. Polysialic acid as an antigen for monoclonal antibody HIgM12 to treat multiple sclerosis and other neurodegenerative disorders. Journal of neurochemistry. 2015 Sep;134(5):865–78. PubMed PMC

Banerjee S, Bhat MA. Neuron-glial interactions in blood-brain barrier formation. Annu Rev Neurosci. 2007;30:235–58. PubMed PMC

Bielekova B, Becker BL. Monoclonal antibodies in MS: mechanisms of action. Neurology. 2010 Jan 5;74(Suppl 1):S31–40. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...